معرفی شرکت ها


cavcalc-1.1.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A program for computing Fabry-Perot optical cavity parameters.
ویژگی مقدار
سیستم عامل -
نام فایل cavcalc-1.1.0
نام cavcalc
نسخه کتابخانه 1.1.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Samuel Rowlinson
ایمیل نویسنده samueljrowlinson@gmail.com
آدرس صفحه اصلی https://cavcalc.readthedocs.io/en/latest/
آدرس اینترنتی https://pypi.org/project/cavcalc/
مجوز GPL-3.0-or-later
![](https://gitlab.com/sjrowlinson/cavcalc/raw/master/docs/source/_static/logo.svg) A command line program and Python module for computing parameters associated with linear, Fabry-Perot optical cavities. - Find the documentation at: https://cavcalc.readthedocs.io/en/latest/ - Follow the latest changes: https://gitlab.com/sjrowlinson/cavcalc - See the entry on PyPI: https://pypi.org/project/cavcalc/ ## Installation To install `cavcalc`, simply run: ``` pip install cavcalc ``` Check that the installation was successful with: ```bash cavcalc --version ``` if you see something along the lines of ``` cavcalc v1.1.0 ``` then you should be ready to start using `cavcalc`! **Note**: As is often recommended with the installation of Python packages (especially those with dependencies on packages such as `numpy` and `matplotlib`, as is the case here), you should prefer to install `cavcalc` in a suitable virtual environment. See [the official documentation on Python virtual environments](https://docs.python.org/3/tutorial/venv.html) for details on how to set up these if you are unfamiliar with the topic. ## Example usage via the CLI For details on available arguments run `cavcalc -h` on the command line. Some examples follow on how to use `cavcalc`. See [the documentation on using cavcalc](https://cavcalc.readthedocs.io/en/latest/using/index.html) for more in-depth examples and guides. ### Computing single parameters You can ask for, e.g., the beam size on the mirrors of a symmetric cavity given its length and stability factor of the mirrors (gs) with: ```bash cavcalc w -L 4000 -gs 0.91 ``` This would result in an output of: ``` Given: Cavity length = 4000 m Stability g-factor of both mirrors = 0.91 Wavelength of beam = 1064 nm Computed: Radius of beam at mirrors = 57.16193267930482 mm ``` Units for both inputs and outputs can also be specified: ```bash cavcalc w -u mm -L 10km -gouy 145deg ``` This requests the beam radius (in mm) on the mirrors of a symmetric cavity of length 10km given that the round-trip Gouy phase is 145 degrees; resulting in the following output: ``` Given: Cavity length = 10 km Round-trip Gouy phase = 145 deg Wavelength of beam = 1064 nm Computed: Radius of beam at mirrors = 59.59174828941794 mm ``` Support for units is provided via the package [Pint](https://pint.readthedocs.io/en/stable/index.html), so any units defined in the Pint unit-registry can be used in cavcalc. ### Computing all available parameters A compute target of `all` is the default choice which is used to calculate all parameters which can be determined from the arguments specified. For example, using approximate values of the Advanced LIGO arm cavity parameters, ```bash cavcalc -L 4km -Rc1 1934 -Rc2 2245 -T1 0.014 -L1 37.5e-6 -T2 5e-6 -L2 37.5e-6 ``` gives the following output: ``` Given: Loss of first mirror = 3.75e-05 Loss of second mirror = 3.75e-05 Transmission of first mirror = 0.014 Transmission of second mirror = 5e-06 Cavity length = 4 km Radius of curvature of first mirror = 1934 m Radius of curvature of second mirror = 2245 m Wavelength of beam = 1064 nm Computed: FSR = 37474.05725 Hz FWHM = 84.56921734107604 Hz Mode separation frequency = 4988.072188176178 Hz Pole frequency = 42.28460867053802 Hz Finesse = 443.11699254426594 Reflectivity of first mirror = 0.9859625 Reflectivity of second mirror = 0.9999574999999999 Position of beam waist (from first mirror) = 1837.2153886417168 m Radius of beam at first mirror = 53.421066433049255 mm Radius of beam at second mirror = 62.448079883230896 mm Radius of beam at waist = 11.950538458990879 mm Stability g-factor of cavity = 0.8350925761717987 Stability g-factor of first mirror = -1.0682523267838677 Stability g-factor of second mirror = -0.7817371937639199 Round-trip Gouy phase = 312.0813565565169 deg Divergence angle = 0.0016237789746943276 deg ``` ### Units of output The default behaviour for the output parameter units is to grab the relevant parameter type option under the `[units]` header of the `cavcalc.ini` configuration file. When installing `cavcalc`, this file is written to a new `cavcalc/` directory within your config directory (i.e. typically `~/.config/cavcalc/cavcalc.ini` under Unix systems). See the comments in this file for details on the options available for the output units of each parameter type. `cavcalc` attempts to read a `cavcalc.ini` config file from several locations in this fixed order: - Firstly from the current working directory, then - from `$XDG_CONFIG_HOME/cavcalc/` (or `%APPDATA%/cavcalc/` on Windows), then - the final read attempt is from the within the source of the package directory itself. The config options from these read attempts are loaded in a standard way; that is, any options appearing first in the sequence defined above will take priority. If any of the above read attempts fails, then this will be a silent failure; the only situation where an error could occur would be when *all* of the above read attempts fail (which is very unlikely to happen). Note that if you specify a `-u` argument when running `cavcalc` from the CLI, then this takes priority over the options in the config file (as we saw in an example above). ### Evaluating, and plotting, parameters over data ranges Parameters can be computed over ranges of data using: * the data range syntax: `-<param_name> "start stop num [<units>]"`, * or data from an input file with `-<param_name> <file>`. We can use data-ranges to compute, and plot, arrays of target values, e.g: ```bash cavcalc w -L "1 10 100 km" -Rc 5.1km --plot ``` This results in a plot (see below) showing how the beam radius at the mirrors of a symmetric cavity varies from a cavity length of 1 km to 10 km with 100 data points, with the radii of curvature of both mirrors fixed at 5.1 km. ![](https://gitlab.com/sjrowlinson/cavcalc/raw/master/images/symmcav_ws_vs_lengths.png) Alternatively one could use a file of data, e.g: ```bash cavcalc gouy -L 5cm -w beam_radii.txt --plot --saveplot symmcav_gouy_vs_ws.png ``` This then computes the round-trip Gouy phase (in degrees) of a symmetric cavity of length 5cm using beam radii data stored in a file `beam_radii.txt`, and plots the results (see below). Note also that you can save the resulting figure using the `--saveplot <filename>` syntax as seen in the above command. ![](https://gitlab.com/sjrowlinson/cavcalc/raw/master/images/symmcav_gouy_vs_ws.png) From the plot above you can also see that cavcalc supports automatically plotting of quantities which can be dual-valued. In this case, the Gouy phase can be one of two values for each beam radius; this is due to the nature of the equations which govern the Fabry-Perot cavity dynamics. ### Image / density plots via `--mesh` When multiple arguments are given as data-ranges, one can use the `--mesh` option to construct mesh-grids of these parameters. This allows cavcalc to automatically produce image plots. For example: ```bash cavcalc w -L "1 10 100 km" -gouy "20 120 100 deg" --mesh true --plot ``` computes the radius of the beam on the mirrors of a symmetric cavity, against both the cavity length and round-trip Gouy phase on a grid. This results in the plot shown below. Note that we simply used `--mesh true` here, which automatically determines the ordering of the mesh-grid parameters based on the order in which these parameters were given. One could replace the above with, e.g., `--mesh "gouy,L"` to reverse the order of the mesh-grid; and thereby flip the parameter axes on any automated plots. ![](https://gitlab.com/sjrowlinson/cavcalc/raw/master/images/symmcav_w_vs_L_gouy.png) A matplotlib compliant colour-map can be specified when making an image plot using the `--cmap <name>` option. For example, the following command gives the plot shown below. ```bash cavcalc gouy -L 12um -g1 "-2 2 499" -g2 "-2 2 499" --mesh true --plot --cmap Spectral_r ``` ![](https://gitlab.com/sjrowlinson/cavcalc/raw/master/images/asymmcav_w0_vs_g1g2.png) ## A note on g-factors Stability (g) factors are split into four different parameters for implementation purposes and to hopefully make it clearer as to which argument is being used and whether the resulting cavity computations are for a symmetric or asymmetric cavity. These arguments are detailed here: - `-gs` : The symmetric, singular stability factor. This represents the individual g-factors of **both** cavity mirrors. Use this to define a *symmetric* cavity where the overall cavity g-factor is then simply `g = gs * gs`. - `-g` : The overall cavity stability factor. This is the product of the individual g-factors of the cavity mirrors. Use this to define a *symmetric* cavity where the individual g-factors of **both** mirrors are then `gs = +/- sqrt(g)`. - `-g1` : The stability factor of the first cavity mirror. Use this to define an *asymmetric* cavity along with the argument `-g2` such that the overall cavity g-factor is then `g = g1 * g2`. - `-g2` : The stability factor of the second cavity mirror. Use this to define an *asymmetric* cavity along with the argument `-g1` such that the overall cavity g-factor is then `g = g1 * g2`. --- ## Using `cavcalc` programmatically As well as providing a CLI, cavcalc has a full API which allows users to interact with this tool via Python. The recommended method for doing this is to use the single-function interface via [`cavcalc.calculate`](https://cavcalc.readthedocs.io/en/latest/api/generated/cavcalc.calculate.calculate.html#cavcalc.calculate.calculate). This function works similarly to the CLI, where a target can be specified along with a variable number of keyword arguments corresponding to the physical parameters. This function then returns one of two output objects (`SingleOutput` if a target was given, `MultiOutput` otherwise); see [`cavcalc.output`](https://cavcalc.readthedocs.io/en/latest/api/cavcalc.output.html#module-cavcalc.output) for details. For example, the following script will compute all available targets from the cavity length and mirror radii of curvature provided: ```python import cavcalc as cc # Specifying no target means all possible targets are computed out = cc.calculate(L="4km", Rc1=1934, Rc2=2245) # Printing the output object results in the same output as # you would see when running via the CLI print(out) ``` producing: ``` Given: Cavity length = 4 km Radius of curvature of first mirror = 1934 m Radius of curvature of second mirror = 2245 m Wavelength of beam = 1064 nm Computed: FSR = 37474.05725 Hz Mode separation frequency = 4988.072188176178 Hz Position of beam waist (from first mirror) = 1837.2153886417168 m Radius of beam at first mirror = 53.421066433049255 mm Radius of beam at second mirror = 62.448079883230896 mm Radius of beam at waist = 11.950538458990879 mm Stability g-factor of cavity = 0.8350925761717987 Stability g-factor of first mirror = -1.0682523267838677 Stability g-factor of second mirror = -0.7817371937639199 Round-trip Gouy phase = 312.0813565565169 deg Divergence angle = 0.0016237789746943276 deg ``` An extra feature of the API is the ability to use the `cavcalc.configure` function for overriding default behaviour. For example, in the script below we use this in a context-managed scope to temporarily use microns for any beam radius parameters, mm for distances, and GHz for any frequencies: ```python import cavcalc as cc # Temporarily override units... with cc.configure(beamsizes="um", distances="mm", frequencies="GHz"): out = cc.calculate(L=8, gouy=121) print(out) # ... previous state (using loaded config options) will # be restored on exit from the with block above ``` resulting in: ``` Given: Cavity length = 8 mm Round-trip Gouy phase = 121 deg Wavelength of beam = 1064 nm Computed: FSR = 18.737028625 GHz Mode separation frequency = 6.297723510069445 GHz Position of beam waist (from first mirror) = 4.0 mm Radius of curvature of both mirrors = 0.01576117284251957 m Radius of beam at mirrors = 55.79464044247193 µm Radius of beam at waist = 48.19739141432035 µm Stability g-factor of cavity = 0.2424809625449729 Stability g-factor of both mirrors = 0.4924235601034671 Divergence angle = 0.40260921048107506 deg ```


نیازمندی

مقدار نام
>=0.19.2,<0.20.0 Pint
>=4.0,<5.0 importlib-metadata
>=3.6.1,<4.0.0 matplotlib
>=1.23.3,<2.0.0 numpy


زبان مورد نیاز

مقدار نام
>=3.9,<4.0 Python


نحوه نصب


نصب پکیج whl cavcalc-1.1.0:

    pip install cavcalc-1.1.0.whl


نصب پکیج tar.gz cavcalc-1.1.0:

    pip install cavcalc-1.1.0.tar.gz