معرفی شرکت ها


cause-effect-0.2.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A library for cause-effect relationships.
ویژگی مقدار
سیستم عامل -
نام فایل cause-effect-0.2.0
نام cause-effect
نسخه کتابخانه 0.2.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Benjamin Weber
ایمیل نویسنده mail@bwe.im
آدرس صفحه اصلی http://bitbucket.com/hyllos/cause_effect
آدرس اینترنتی https://pypi.org/project/cause-effect/
مجوز MIT license
.. image:: http://ci.appveyor.com/api/projects/status/m0f9fw5b670whkw8?svg=true :target: https://ci.appveyor.com/project/hyllos/cause-effect Install it ----------- You can install ``cause_effect`` via: .. code-block:: bash $ pip install cause_effect Alternatively, you can install from the code repository directly: .. code-block:: bash $ pip install hg+http://bitbucket.org/hyllos/cause_effect Core Functions -------------- ``pareto(values)`` Is a pareto distribution present for a list of numbers (``ratio`` <= 1)? ``mccauses(values)`` Which causes have the highest concentration (rank * value)? ``mceffects(values)`` Which effects have the highest concentration? ``separator(values)``` From which value (including) does the highest concentration begin? ``causes(values, effects=0.8)`` Determine causes for specified share of effects. ``effects(values, causes=0.2)`` Determine effects for specified share of causes. Secondary Functions ------------------- ``ratio(values)`` ``entropy`` divided by ``control_limit``. ``entropy(values)`` Calculate entropy for values. ``control_limit(count)`` Calculate control entropy for ``count`` number of elements (length of ``values``). Tertiary Functions ------------------- ``make_causes(count)`` Return list of causes that is cumulative percent of ``count`` number of elements. ``make_effects(values)`` Return list of effects that is cumulative percent of values. ``make_concentration(values)`` Return list of concentration for list of ``values`` that is rank * value. ``sort_list(values)`` Return sorted list of numbers. Parameters ----------- ``values`` is a list of numbers. ``effects`` and ``causes`` must be a number between 0 and 1 (including). ``count`` is the length of the list of ``values``. Use it ------ The function ``pareto`` tells you whether a pareto distribution is present for a list of numbers: .. code-block:: python from pareto import pareto, mccauses, mceffects pareto([789, 621, 109, 65, 45, 30, 27, 15, 12, 9]) True Here, we have a pareto distribution present. That is a minority causes a majority of effects. But which minority causes which majority? .. code-block:: python mccauses([789, 621, 109, 65, 45, 30, 27, 15, 12, 9]) 0.2 mceffects([789, 621, 109, 65, 45, 30, 27, 15, 12, 9]) 0.818815331010453 20% of causes effect 82% of results. But which values are that 20%? .. code-block:: python separator([789, 621, 109, 65, 45, 30, 27, 15, 12, 9]) 621 All values greater or equal than 621 are those 20% causing 82% of results. **That's it.** Dig Deeper ----------- How many causes are required for only 90% of effects? .. code-block:: python from pareto import causes, effects causes([789, 621, 109, 65, 45, 30, 27, 15, 12, 9], 0.9) 0.4 40%. How many effects are behind only 10% of causes? .. code-block:: python effects([789, 621, 109, 65, 45, 30, 27, 15, 12, 9], 0.1) 0.458 45.8%. How does it work? ----------------- ``pareto`` calculates the `entropy`_ for a list of effects: .. code-block:: python from pareto import entropy, control_limit, ratio entropy([789, 621, 109, 65, 45, 30, 27, 15, 12, 9]) 1.9593816735406657 It calculates the entropy for a control group of ten elements. That is the length of our list. .. code-block:: python control_limit(10) 2.7709505944546686 It then checks ``entropy`` is less or equal than ``control_limit``. This can be simplified to: .. code-block:: python values = [789, 621, 109, 65, 45, 30, 27, 15, 12, 9] entropy(values) / control_limit(len(values)) <= 1 The left side of the comparison is done by ``ratio``. So, if you want to find out how nearby or far off you are from a pareto distribution, do: .. code-block:: python ratio([109, 65, 45, 30, 27, 15, 12, 9]) 1.051 If we remove the first two effects, the ``control_limit`` will be exceeded by the values. So, we learn here that the pareto distribution disappears with the first two effects. .. _entropy: http://www.boazronen.org/PDF/The%20Pareto%20managerial%20principle%20-%20when%20does%20it%20apply.pdf ``mccauses`` and ``mceffects`` return the respective share of the causes and effects where concentration (rank * value) is highest. ======= History ======= 0.2.0 (2016-10-21) ------------------ * Add function separator(). * Streamline tests. 0.1.0 (2016-10-20) ------------------ * First release on PyPI.


نحوه نصب


نصب پکیج whl cause-effect-0.2.0:

    pip install cause-effect-0.2.0.whl


نصب پکیج tar.gz cause-effect-0.2.0:

    pip install cause-effect-0.2.0.tar.gz