معرفی شرکت ها


causalimpact-0.2.6


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Python Package for causal inference using Bayesian structural time-series models
ویژگی مقدار
سیستم عامل -
نام فایل causalimpact-0.2.6
نام causalimpact
نسخه کتابخانه 0.2.6
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Jamal Senouci
ایمیل نویسنده jamalsenouci@gmail.com
آدرس صفحه اصلی https://github.com/jamalsenouci/causalimpact/
آدرس اینترنتی https://pypi.org/project/causalimpact/
مجوز MIT
## CausalImpact [![Python package](https://github.com/jamalsenouci/causalimpact/actions/workflows/main.yml/badge.svg)](https://github.com/jamalsenouci/causalimpact/actions/workflows/main.yml) [![codecov](https://codecov.io/gh/jamalsenouci/causalimpact/branch/master/graph/badge.svg?token=EIPC36VQHS)](https://codecov.io/gh/jamalsenouci/causalimpact) ![monthly downloads](https://pepy.tech/badge/causalimpact/month) [![DeepSource](https://deepsource.io/gh/jamalsenouci/causalimpact.svg/?label=active+issues&show_trend=true&token=R5aIDSkIId_5THWTAPKccjcH)](https://deepsource.io/gh/jamalsenouci/causalimpact/?ref=repository-badge) #### A Python package for causal inference using Bayesian structural time-series models This is a port of the R package CausalImpact, see: https://github.com/google/CausalImpact. This package implements an approach to estimating the causal effect of a designed intervention on a time series. For example, how many additional daily clicks were generated by an advertising campaign? Answering a question like this can be difficult when a randomized experiment is not available. The package aims to address this difficulty using a structural Bayesian time-series model to estimate how the response metric might have evolved after the intervention if the intervention had not occurred. As with all approaches to causal inference on non-experimental data, valid conclusions require strong assumptions. The CausalImpact package, in particular, assumes that the outcome time series can be explained in terms of a set of control time series that were themselves not affected by the intervention. Furthermore, the relation between treated series and control series is assumed to be stable during the post-intervention period. Understanding and checking these assumptions for any given application is critical for obtaining valid conclusions. #### Try it out in the browser [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/jamalsenouci/causalimpact/HEAD?labpath=GettingStarted.ipynb) #### Installation install the latest release via pip ```bash pip install causalimpact ``` #### Getting started [Documentation and examples](https://nbviewer.org/github/jamalsenouci/causalimpact/blob/master/GettingStarted.ipynb) #### Further resources - Manuscript: [Brodersen et al., Annals of Applied Statistics (2015)](http://research.google.com/pubs/pub41854.html) #### Bugs The issue tracker is at https://github.com/jamalsenouci/causalimpact/issues. Please report any bugs that you find. Or, even better, fork the repository on GitHub and create a pull request.


نیازمندی

مقدار نام
- pandas
- numpy
- statsmodels
- matplotlib
- pymc
- pytensor
- importlib-metadata
- setuptools
- pytest
- pytest-cov


زبان مورد نیاز

مقدار نام
>=2.6 Python


نحوه نصب


نصب پکیج whl causalimpact-0.2.6:

    pip install causalimpact-0.2.6.whl


نصب پکیج tar.gz causalimpact-0.2.6:

    pip install causalimpact-0.2.6.tar.gz