معرفی شرکت ها


causalicp-0.1.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Python implementation of the Invariant Causal Prediction (ICP) algorithm for causal discovery.
ویژگی مقدار
سیستم عامل -
نام فایل causalicp-0.1.1
نام causalicp
نسخه کتابخانه 0.1.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Juan L Gamella
ایمیل نویسنده juangamella@gmail.com
آدرس صفحه اصلی https://github.com/juangamella/icp
آدرس اینترنتی https://pypi.org/project/causalicp/
مجوز BSD 3-Clause License
# Invariant Causal Prediction (ICP) Algorithm for Causal Discovery This is a Python implementation of the Invariant Causal Prediction (ICP) algorithm from the 2016 [paper](https://rss.onlinelibrary.wiley.com/doi/pdfdirect/10.1111/rssb.12167) *"Causal inference using invariant prediction: identification and confidence intervals"* by Jonas Peters, Peter Bühlmann and Nicolai Meinshausen. At the point of writing, and to the best of my knowledge, the only other publicly available implementation of the algorithm is in the [R package](https://cran.r-project.org/web/packages/InvariantCausalPrediction/index.html) written by the original authors. ## Installation You can clone this repo or install the python package via pip: ```bash pip install causalicp ``` The package is still at its infancy and its API is subject to change. However, this will be done with care: non backward-compatible changes to the API are reflected by a change to the minor or major version number, > e.g. *code written using causalicp==0.1.2 will run with causalicp==0.1.3, but may not run with causalicp==0.2.0.* The code has been written with an emphasis on readability and on keeping the dependency footprint to a minimum; to this end, the only dependencies outside the standard library are `numpy`, `scipy` and `termcolor`. ## Documentation You can find the complete documentation at https://icp.readthedocs.io/en/latest/. For completeness, we include here an overview and an example. ### Running the algorithm: `causalicp.fit` To run the algorithm, the function `fit` is provided: ```python causalicp.fit(data, target, alpha=0.05, sets=None, precompute=True, verbose=False, color=True): ``` **Parameters** - ***data*** (numpy.ndarray or list of array-like): The data from all experimental settings. Each element of the list/array is a 2-dimensional array with a sample from a different setting, where columns correspond to variables and rows to observations (data-points). The data also contains the response variable, which is specified with the `target` parameter. - ***target*** (int) The index of the response or target variable of interest. - ***alpha*** (float, default=0.05 The level of the test procedure, taken from `[0,1]`. Defaults to `0.05`. - ***sets*** (list of set or None, default=None): The sets for which ICP will test invariance. An error is raised if a set is not a subset of `{0,...,p-1}` or it contains the target, where `p` is the total number of variables (including the target). If `None` all possible subsets of predictors will be considered. - ***precompute*** (bool, default=True): Wether to precompute the sample covariance matrix to speed up linear regression during the testing of each predictor set. For large sample sizes this drastically reduces the overall execution time, but it may result in numerical instabilities for highly correlated data. If set to `False`, for each set of predictors the regression is done using an iterative least-squares solver on the raw data. - ***verbose*** (bool, default=False): If ICP should run in verbose mode, i.e. displaying information about completion and the result of tests. - ***color*** (bool, default=True): If the output produced when `verbose=True` should be color encoded (not recommended if your terminal does not support ANSII color formatting), see [termcolor](https://pypi.org/project/termcolor/). **Raises** - ***ValueError***: If the value of some of the parameters is not appropriate, e.g. `alpha` is negative, `data` contains samples with different number of variables, or `sets` contains invalid sets. - ***TypeError*** : If the type of some of the parameters was not expected (see examples below). **Returns** The result of the algorithm is returned in a `causalicp.Result` object, with the following attributes: - ***p*** (int): The total number of variables in the data (including the response/target). - ***target*** (int): The index of the response/target. - ***estimate*** (set or None): The estimated parental set returned by ICP, or `None` if all sets of predictors were rejected. - ***accepted_sets*** (list of set): A list containing the accepted sets of predictors. - ***rejected_sets*** (list of set): A list containing the rejected sets of predictors. - ***pvalues*** (dict of (int, float)): A dictionary containing the p-value for the causal effect of each individual predictor. The target/response is included in the dictionary and has value `nan`. - ***conf_intervals*** (numpy.ndarray or None): A `2 x p` array of floats representing the confidence interval for the causal effect of each variable. Each column corresponds to a variable, and the first and second row correspond to the lower and upper limit of the interval, respectively. The column corresponding to the target/response is set to `nan`. ### An example We generate interventional data from a linear-Gaussian SCM using [`sempler`](https://github.com/juangamella/sempler) (not a dependency of `causalicp`). ```python import sempler, sempler.generators import numpy as np np.random.seed(12) # Generate a random graph and construct a linear-Gaussian SCM W = sempler.generators.dag_avg_deg(4, 2.5, 0.5, 2) scm = sempler.LGANM(W, (-1,1), (1,2)) # Generate a sample for setting 1: Observational setting data = [scm.sample(n=100)] # Setting 2: Shift-intervention on X1 data += [scm.sample(n=130, shift_interventions = {1: (3.1, 5.4)})] # Setting 3: Do-intervention on X2 data += [scm.sample(n=98, do_interventions = {2: (-1, 3)})] ``` Running ICP for the response variable `3`, at a significance level of `0.05`. ```python import causalicp as icp result = icp.fit(data, 3, alpha=0.05, precompute=True, verbose=True, color=False) # Output: # Tested sets and their p-values: # set() rejected : 2.355990957880749e-10 # {0} rejected : 7.698846116207467e-16 # {1} rejected : 4.573866047163566e-09 # {2} rejected : 8.374476052441259e-08 # {0, 1} accepted : 0.7330408066181638 # {0, 2} rejected : 2.062882130448634e-15 # {1, 2} accepted : 0.8433000000649277 # {0, 1, 2} accepted : 1 # Estimated parental set: {1} ``` The estimate, accepted sets, etc. are attributes of the `causalicp.Result` object: ```python result.estimate # {1} result.accepted_sets # [{0, 1}, {1, 2}, {0, 1, 2}] result.rejected_sets # [set(), {0}, {1}, {2}, {0, 2}] result.pvalues # {0: 0.8433000000649277, 1: 8.374476052441259e-08, 2: 0.7330408066181638, 3: nan} result.conf_intervals # array([[0. , 0.57167295, 0. , nan], # [2.11059461, 0.7865869 , 3.87380337, nan]]) ``` ## Code structure The code is divided in two modules: - `icp.py` which contains the implementation of the algorithm (`fit` function) and the definition of the `Result` object. - `data.py` which contains a class to manage the multi-environment data and perform the linear regression for each set in an efficient way. ## Tests Unit tests and doctests are included. Additionally, the output of the overall procedure has been checked over tens of thousands of random graphs against that of the [R package](https://cran.r-project.org/web/packages/InvariantCausalPrediction/index.html) by the original authors. Of course, this doesn't mean there are no bugs, but hopefully it means *they are less likely* :) The tests can be run with `make tests`. This will also execute the doctests, generate `1000` random SCMs + interventions, and run the `R` implementation on them for comparison. You can add `SUITE=<module_name>` to run a particular module only. There are, however, additional dependencies to run the tests. You can find these in [`requirements_tests.txt`](https://github.com/juangamella/icp/blob/master/requirements_tests.txt) and [`R_requirements_tests.txt`](https://github.com/juangamella/icp/blob/master/R_requirements_tests.txt). ## Feedback I hope you find this useful! Feedback and (constructive) criticism is always welcome, just shoot me an [email](mailto:juan.gamella@stat.math.ethz.ch) :)


نیازمندی

مقدار نام
>=1.17.3 numpy
>=1.4.0 scipy
>=1.1.0 termcolor


نحوه نصب


نصب پکیج whl causalicp-0.1.1:

    pip install causalicp-0.1.1.whl


نصب پکیج tar.gz causalicp-0.1.1:

    pip install causalicp-0.1.1.tar.gz