معرفی شرکت ها


casymda-0.2.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Simple DES modeling and simulation based on SimPy, BPMN, and pixi.js
ویژگی مقدار
سیستم عامل -
نام فایل casymda-0.2.9
نام casymda
نسخه کتابخانه 0.2.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده FFC
ایمیل نویسنده fladdi.mir@gmx.de
آدرس صفحه اصلی https://github.com/fladdimir/casymda
آدرس اینترنتی https://pypi.org/project/casymda/
مجوز MIT
# BPMN-based creation of SimPy discrete event simulation models Wouldn't it be _cool_ to combine the block-based process modeling experience of commercial discrete event simulation packages with the amenities of proper IDE-based source-code editing? (Think Arena / Anylogic / ExtendSim / Plant Simulation / ... but with simple integration of third-party libraries, industry-standard interfaces, unit- and integration testing, dockerization, serverless execution in the cloud of your choice... and even actually working auto-completion! _:D_) And all that not only for free, but using the worlds most popular language for data analytics and machine learning? _Casymda_ enables you to create [SimPy3](https://simpy.readthedocs.io/en/latest/) simulation models, with help of BPMN and the battle-tested [Camunda-Modeler](<http://www.bpmn.io>). Created BPMN process diagrams are parsed and converted to Python-code, combining visual oversight of model structure with code-based definition of model behavior. Immediately executable, including a token-based process animation, allowing for space-discrete entity movements, and ready to be wrapped as a gym-environment to let a machine-learning algorithm find a control strategy. Further information and sample projects: - <https://fladdimir.github.io/post/> (English) - <https://casymda.github.io/page/Webpage/Startpage.html> (German) ## Installation From [PyPI](https://pypi.org/project/casymda/): ``` l pip install casymda ``` ## Features - connectable blocks for processing of entities - graphical model description via camunda modeler - process visualization browser-based or via tkinter - space-discrete tilemap-movements of entities - gradually typed (checkout [pyright](https://github.com/microsoft/pyright) for vscode) Coming soon: - automated model generation from process event-logs via [PM4Py](http://pm4py.org/) ## Examples Basic features are illustrated as part of the example models (which also serve as integration tests): - basics: - bpmn-based generation of a simple model file - run the generated model - process visualization via tkinter - browser-based visualization (served with [flask](https://palletsprojects.com/p/flask/), animated with [pixijs](https://www.pixijs.com/)) - resources: - seize and release a resource via graphical modeling - tilemap: - entity movement along a shortest path defined by a csv-tilemap (built on networkx: <https://networkx.github.io/>) For setup just clone the repository and install casymda ([virtual environment](https://docs.python.org/3/tutorial/venv.html) recommended). See [basics-visual-run-tkinter](exec/basics/visual_run.py) for an example of how to cope with python-path issues. ## Design - [Model generation and execution](diagrams/model+execution.pdf) - [Blocks and animation](diagrams/blocks+animation.pdf) ## Development This project trusts [Black](https://black.readthedocs.io/en/stable/) for formatting, [Sonarqube](https://www.sonarqube.org/) for static code analysis, and [pytest](https://docs.pytest.org/en/latest/) for unit & integration testing. Developed and tested on Linux (Ubuntu 20.04), Python 3.8.5. Tests can be carried out inside a docker-container, optionally including an installation from pypi to verify a successful upload. ### Sonarqube sonarqube server (public docker image): ``` l docker-compose up sonarqube ``` sonar-scanner (public docker image): ``` l docker-compose up analysis ``` (run a docker-based unit-test first for coverage-reporting) (remember to share your drive via Docker-Desktop settings if necessary, to be re-applied after each password change) ### Tests ``` l pytest --cov-report term --cov=src/casymda/ tests/ ``` integrations tests: ``` l python3 -m pytest examples ``` (integration-tests require tkinter, which may be installed via `sudo apt-get install python3-tk`) For Docker-based tests see [docker-compose.yml](docker-compose.yml) ``` l docker-compose run unit-test docker-compose run examples-test docker-compose run examples-test-pypi ``` ### Virtual environment setup ``` l python3 -m venv venv ``` ### Editable installation ``` l pip install -e . ``` ### Publish to pypi ``` l python setup.py sdist twine upload dist/* ``` pip install twine if necessary, remember to set the version in [setup.py](setup.py) and [src/casymda](src/casymda/__init__.py) as required ### PyPy3 Tested PyPy3 (7.3.1-final). Install pypy3 pypy3-dev pypy-tk. Runtime could be decreased by factor ~2 when using PyPy3 for longer simulations runs (e.g. from ~45s to ~25s for a [simple example model test](examples/basics/model/long_run_bpmn_example_test.py) with MAX_ENTITIES set to 40.000 on an i5 notebook). ## Contact fladdi.mir@gmx.de feedback / ideas / discussion / cheering / complaints welcome MIT License 2020


نحوه نصب


نصب پکیج whl casymda-0.2.9:

    pip install casymda-0.2.9.whl


نصب پکیج tar.gz casymda-0.2.9:

    pip install casymda-0.2.9.tar.gz