معرفی شرکت ها


carwatch-0.1.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A Python package for the CARWatch framework to improve cortisol awakening response sampling.
ویژگی مقدار
سیستم عامل -
نام فایل carwatch-0.1.1
نام carwatch
نسخه کتابخانه 0.1.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Annika Muecke
ایمیل نویسنده annika.muecke@fau.de
آدرس صفحه اصلی https://github.com/mad-lab-fau/carwatch
آدرس اینترنتی https://pypi.org/project/carwatch/
مجوز MIT
# CARWatch [![PyPI](https://img.shields.io/pypi/v/carwatch)](https://pypi.org/project/carwatch/) ![GitHub](https://img.shields.io/github/license/mad-lab-fau/carwatch) [![Test and Lint](https://github.com/mad-lab-fau/carwatch/actions/workflows/test-and-lint.yml/badge.svg)](https://github.com/mad-lab-fau/carwatch/actions/workflows/test-and-lint.yml) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) ![PyPI - Downloads](https://img.shields.io/pypi/dm/carwatch) ![GitHub commit activity](https://img.shields.io/github/commit-activity/m/mad-lab-fau/carwatch) **Get the Android app on the Play Store:** [![Google Play](https://img.shields.io/badge/Google%20Play-CARWatch-3DDC84?logo=google-play&logoColor=white)](https://play.google.com/store/apps/details?id=de.fau.cs.mad.carwatch) CARWatch is an open-source framework to support **objective** and **low-cost** assessment of cortisol samples. Its primary focus especially, but not limited to, during the **cortisol awakening response (CAR)** in real-world, unsupervised environments. It consists of an [Android application](https://github.com/mad-lab-fau/carwatch-app) that schedules sampling times and tracks them by scanning a barcode on the respective sampling tube as well as a Python package that provides tools to **configure studies** and **prepare the study materials** and to **process the log data** recorded by the app. ## Features In order to use CARWatch, you need to prepare the study materials and configure the app. All these features are provided by `carwatch` which offers a user-friendly command-line interface for the following tasks: 1. **Setting up a CAR study.** This includes: * Customizing study properties to your needs * Setting up your desired sampling schedule * Generating a QR-Code for the [CARWatch app](https://github.com/mad-lab-fau/carwatch-app) to automatically set up the study in the app 2. **Creating printable labels with barcodes for objective sampling time assessment.** This includes: * Customizing the numer of saliva samples per day, the number of days, and the number of study participants * Adding an optional evening saliva sample * Customize barcodes to fit your printable label templates 3. **Analyzing the CARWatch log data.** This includes: * Extracting the sampling timestamps from the log data * Extracting the self-reported awakening times (if available) * Merging the time information with the cortisol measures ## Installation `carwatch` requires Python >=3.8. First, install a compatible version of Python (e.g. using [miniconda](https://docs.conda.io/en/latest/miniconda.html)). Then, open a terminal (or Anaconda prompt) and install the `carwatch` package via pip: ```bash pip install carwatch ``` Alternatively, you can download the package directly from the source repository on GitHub: ```bash git clone https://github.com/mad-lab-fau/carwatch.git cd carwatch pip install . ``` ### For Developer If you are a developer and want to contribute to `carwatch` you can install an editable version of the package from a local copy of the repository. `carwatch` uses [poetry](https://python-poetry.org) to manage dependencies and packaging. Once you installed poetry, run the following commands to clone the repository, initialize a virtual environment and install all development dependencies: ```bash git clone https://github.com/mad-lab-fau/carwatch.git cd carwatch poetry install ``` ## Usage `carwatch` can be used both **programmatically** and with the provided **command line interface (CLI)**. The core functionalities of the `carwatch` package are * creating a QR-Code for configuring the [CARWatch App](https://github.com/mad-lab-fau/carwatch-app) (Preparation), * creating a PDF with printable barcode labels for the saliva sampling tubes (Preparation), * and extracting the sampling times for the CARWatch app log recordings (Postprocessing). ### Programmatic Usage For the preparation steps, the study details can be specified using the `Study` class. Participant IDs can also be parsed from a *.csv file, when the path to it is specified as `subject_path`, and the corresponding column as `subject_column`. Some basic examples are given below. For more information about the available parameters, please refer to the documentation of the mentioned classes. #### Study Setup Example ```python from carwatch.utils import Study study = Study( study_name="ExampleStudy", num_days=3, num_subjects=15, num_samples=5, subject_prefix="VP_", has_evening_sample=True, start_sample_from_zero=True, ) ``` #### Barcode Generation Example For generating barcodes, the `LabelGenerator` class can be used, receiving a `Study` instance as a parameter. Your custom printing label layout can be specified using the `CustomLayout` class. By default, the [_AveryZweckform J4791_](https://www.avery-zweckform.com/vorlage-j4791) layout is used. To start the PDF generation, call the `generate` method of the `LabelGenerator` class. The output PDF will be exported to the directory specified by `output_dir` (per default: the current working directory). ```python from carwatch.utils import Study from carwatch.labels import CustomLayout, LabelGenerator study = Study( study_name="ExampleStudy", num_days=3, num_subjects=15, num_samples=5, subject_prefix="VP_", has_evening_sample=True, start_sample_from_zero=True, ) generator = LabelGenerator(study=study, add_name=True, has_barcode=True) layout = CustomLayout( num_cols=3, num_rows=4, left_margin=3, right_margin=3, top_margin=2, bottom_margin=2, inter_col=0.2, inter_row=0.5, ) generator.generate(output_dir=".", debug=True, layout=layout) ``` #### QR-Code Generation Example For generating the QR-Code, the `QrCodeGenerator` class can be used, again receiving a `Study` instance as a parameter. The `saliva_distances` parameter specifies the desired distances between saliva samples in minutes. The resulting QR-Code for setting up the CARWatch App will be exported to the directory specified by `output_dir` directory (per default: the current working directory). ```python from carwatch.qr_codes import QrCodeGenerator from carwatch.utils import Study if __name__ == "__main__": study = Study( study_name="ExampleStudy", num_days=3, num_subjects=15, num_samples=5, subject_prefix="VP_", has_evening_sample=True, start_sample_from_zero=True, ) generator = QrCodeGenerator(study=study, saliva_distances=[10, 10, 10], contact_email="dum@my.com") generator.generate(output_dir=".") ``` #### Postprocessing Example To be added ### Command Line Interface For the preparation steps, `carwatch` also provides a CLI for more convenient usage. To use it, open a terminal session in the `carwatch` directory, and activate the corresponding python environment by typing: ``` poetry shell ``` Then, start the CLI by typing: ``` python generate_labels.py ``` You will then be prompted to enter all the required information step-by-step. The desired output files will be automatically generated for you. For more information about the prompted commands please run: ``` python generate_labels.py --help ``` ## License This project is licensed under the MIT License. See the LICENSE file for details. ## Contributing We welcome contributions to `carwatch`! For more information, have a look at the [Contributing Guidelines](CONTRIBUTING.md). ## Citing carwatch If you use `carwatch` in your work, please report the version you used in the text. Additionally, please also cite [our paper](https://www.sciencedirect.com/science/article/abs/pii/S0306453023000513?via%3Dihub) published in Psychoneuroendocrinology: ``` Richer, R., Abel, L., Küderle, A., Eskofier, B. M., & Rohleder, N. (2023). CARWatch – A smartphone application for improving the accuracy of cortisol awakening response sampling. Psychoneuroendocrinology, 151, 106073. https://doi.org/10.1016/j.psyneuen.2023.106073 ``` ## Contact If you have any questions or feedback about CARWatch, please contact [Robert Richer](mailto:robert.richer@fau.de).


نیازمندی

مقدار نام
>=3.4.5,<4.0.0 jupyterlab
>=0.14.0,<0.15.0 python-barcode
>=2.5.2,<3.0.0 CairoSVG
>=8.1.3,<9.0.0 click
>=1.5.0,<2.0.0 pandas
>=7.3.1,<8.0.0 qrcode


زبان مورد نیاز

مقدار نام
>=3.8,<3.11 Python


نحوه نصب


نصب پکیج whl carwatch-0.1.1:

    pip install carwatch-0.1.1.whl


نصب پکیج tar.gz carwatch-0.1.1:

    pip install carwatch-0.1.1.tar.gz