معرفی شرکت ها


carvekit-4.0.8


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Open-Source background removal framework
ویژگی مقدار
سیستم عامل OS Independent
نام فایل carvekit-4.0.8
نام carvekit
نسخه کتابخانه 4.0.8
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Nikita Selin (Anodev)
ایمیل نویسنده farvard34@gmail.com
آدرس صفحه اصلی https://github.com/OPHoperHPO/image-background-remove-tool
آدرس اینترنتی https://pypi.org/project/carvekit/
مجوز Apache License v2.0
# <p align="center"> ✂️ CarveKit ✂️ </p> <p align="center"> <img src="docs/imgs/logo.png"> </p> <p align="center"> <img src="https://github.com/OPHoperHPO/image-background-remove-tool/actions/workflows/master_docker.yaml/badge.svg"> <img src="https://github.com/OPHoperHPO/image-background-remove-tool/actions/workflows/master.yml/badge.svg"> <a src="https://colab.research.google.com/github/OPHoperHPO/image-background-remove-tool/blob/master/docs/other/carvekit_try.ipynb"> <img src="https://camo.githubusercontent.com/52feade06f2fecbf006889a904d221e6a730c194/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667"></a> </p> ********************************************************************** <p align="center"> <img align="center" width="512" height="288" src="docs/imgs/compare/readme.jpg"> </p> > The higher resolution images from the picture above can be seen in the docs/imgs/compare/ and docs/imgs/input folders. #### 📙 README Language [Russian](docs/readme/ru.md) [English](README.md) ## 📄 Description: Automated high-quality background removal framework for an image using neural networks. ## 🎆 Features: - High Quality - Batch Processing - NVIDIA CUDA and CPU processing - Easy inference - 100% remove.bg compatible FastAPI HTTP API - Removes background from hairs - Easy integration with your code ## ⛱ Try yourself on [Google Colab](https://colab.research.google.com/github/OPHoperHPO/image-background-remove-tool/blob/master/docs/other/carvekit_try.ipynb) ## ⛓️ How does it work? It can be briefly described as 1. The user selects a picture or a folder with pictures for processing 2. The photo is preprocessed to ensure the best quality of the output image 3. Using machine learning technology, the background of the image is removed 4. Image post-processing to improve the quality of the processed image ## 🎓 Implemented Neural Networks: * [U^2-net](https://github.com/NathanUA/U-2-Net) * [BASNet](https://github.com/NathanUA/BASNet) * [DeepLabV3](https://github.com/tensorflow/models/tree/master/research/deeplab) ## 🖼️ Image pre-processing and post-processing methods: ### 🔍 Preprocessing methods: * `none` - No preprocessing methods used. > They will be added in the future. ### ✂ Post-processing methods: * `none` - No post-processing methods used. * `fba` (default) - This algorithm improves the borders of the image when removing the background from images with hair, etc. using FBA Matting neural network. This method gives the best result in combination with u2net without any preprocessing methods. ## 🏷 Setup for CPU processing: 1. `pip install carvekit --extra-index-url https://download.pytorch.org/whl/cpu` > The project supports python versions from 3.8 to 3.10.4 ## 🏷 Setup for GPU processing: 1. Make sure you have an NVIDIA GPU with 8 GB VRAM. 2. Install `CUDA Toolkit and Video Driver for your GPU` 3. `pip install carvekit --extra-index-url https://download.pytorch.org/whl/cu113` > The project supports python versions from 3.8 to 3.10.4 ## 🧰 Interact via code: ### If you don't need deep configuration or don't want to deal with it ``` python import torch from carvekit.api.high import HiInterface interface = HiInterface(batch_size_seg=5, batch_size_matting=1, device='cuda' if torch.cuda.is_available() else 'cpu', seg_mask_size=320, matting_mask_size=2048) images_without_background = interface(['./tests/data/cat.jpg']) cat_wo_bg = images_without_background[0] cat_wo_bg.save('2.png') ``` ### If you want control everything ``` python import PIL.Image from carvekit.api.interface import Interface from carvekit.ml.wrap.fba_matting import FBAMatting from carvekit.ml.wrap.u2net import U2NET from carvekit.pipelines.postprocessing import MattingMethod from carvekit.pipelines.preprocessing import PreprocessingStub from carvekit.trimap.generator import TrimapGenerator u2net = U2NET(device='cpu', batch_size=1) fba = FBAMatting(device='cpu', input_tensor_size=2048, batch_size=1) trimap = TrimapGenerator() preprocessing = PreprocessingStub() postprocessing = MattingMethod(matting_module=fba, trimap_generator=trimap, device='cpu') interface = Interface(pre_pipe=preprocessing, post_pipe=postprocessing, seg_pipe=u2net) image = PIL.Image.open('tests/data/cat.jpg') cat_wo_bg = interface([image])[0] cat_wo_bg.save('2.png') ``` ## 🧰 Running the CLI interface: * ```python3 -m carvekit -i <input_path> -o <output_path> --device <device>``` ### Explanation of args: ```` Usage: carvekit [OPTIONS] Performs background removal on specified photos using console interface. Options: -i ./2.jpg Path to input file or dir [required] -o ./2.png Path to output file or dir --pre none Preprocessing method --post fba Postprocessing method. --net u2net Segmentation Network --recursive Enables recursive search for images in a folder --batch_size 10 Batch Size for list of images to be loaded to RAM --batch_size_seg 5 Batch size for list of images to be processed by segmentation network --batch_size_mat 1 Batch size for list of images to be processed by matting network --seg_mask_size 320 The size of the input image for the segmentation neural network. --matting_mask_size 2048 The size of the input image for the matting neural network. --device cpu Processing Device. --help Show this message and exit. ```` ## 📦 Running the Framework / FastAPI HTTP API server via Docker: Using the API via docker is a **fast** and non-complex way to have a working API.\ **This HTTP API is 100% compatible with remove.bg API clients.** <p align="center"> <img src="docs/imgs/screenshot/frontend.png"> <img src="docs/imgs/screenshot/docs_fastapi.png"> </p> >### Important Notes: >1. Docker image has default front-end at `/` url and FastAPI backend with docs at `/docs` url. >2. Authentication is **enabled** by default. \ > **Token keys are reset** on every container restart if ENV variables are not set. \ See `docker-compose.<device>.yml` for more information. \ > **You can see your access keys in the docker container logs.** > >3. There are examples of interaction with the API.\ > See `docs/code_examples/python` for more details ### 🔨 Creating and running a container: 1. Install `docker-compose` 2. Run `docker-compose -f docker-compose.cpu.yml up -d` # For CPU Processing 3. Run `docker-compose -f docker-compose.cuda.yml up -d` # For GPU Processing > Also you can mount folders from your host machine to docker container > and use the CLI interface inside the docker container to process > files in this folder. > Building a docker image on Windows is not officially supported. You can try using WSL2 or "Linux Containers Mode" but I haven't tested this. ## ☑️ Testing ### ☑️ Testing with local environment 1. `pip install -r requirements_test.txt` 2. `pytest` ### ☑️ Testing with Docker 1. Run `docker-compose -f docker-compose.cpu.yml run carvekit_api pytest` # For testing on CPU 2. Run `docker-compose -f docker-compose.cuda.yml run carvekit_api pytest` # For testing on GPU ## 👪 Credits: [More info](docs/CREDITS.md) ## 💵 Support You can thank me for developing this project and buy me a small cup of coffee ☕ | Blockchain | Cryptocurrency | Network | Wallet | |:----------:|:-----------------------------------:|:-------------------------:|:-----------------------------------------------------------------------------------------------:| | Ethereum | ETH / USDT / USDC / BNB / Dogecoin | Mainnet | 0x7Ab1B8015020242D2a9bC48F09b2F34b994bc2F8 | | Ethereum | ETH / USDT / USDC / BNB / Dogecoin | BSC (Binance Smart Chain) | 0x7Ab1B8015020242D2a9bC48F09b2F34b994bc2F8 | | Bitcoin | BTC | - | bc1qmf4qedujhhvcsg8kxpg5zzc2s3jvqssmu7mmhq | | ZCash | ZEC | - | t1d7b9WxdboGFrcVVHG2ZuwWBgWEKhNUbtm | | Tron | TRX | - | TH12CADSqSTcNZPvG77GVmYKAe4nrrJB5X | | Monero | XMR | Mainnet | 48w2pDYgPtPenwqgnNneEUC9Qt1EE6eD5MucLvU3FGpY3SABudDa4ce5bT1t32oBwchysRCUimCkZVsD1HQRBbxVLF9GTh3 | | TON | TON | - | EQCznqTdfOKI3L06QX-3Q802tBL0ecSWIKfkSjU-qsoy0CWE | ## 📧 __Feedback__ I will be glad to receive feedback on the project and suggestions for integration. For all questions write: [farvard34@gmail.com](mailto://farvard34@gmail.com)


نیازمندی

مقدار نام
~=2.27.1 requests
~=1.11.0 torch
==9.0.1 Pillow
~=3.7.4.3 typing
~=0.12.0 torchvision
~=4.5.5.64 opencv-python
~=1.22.4 numpy
~=0.6.0 loguru
~=0.17.6 uvicorn
~=0.78.0 fastapi
~=0.19.1 starlette
~=1.9.1 pydantic
~=8.1.3 click
~=4.64.0 tqdm
~=62.3.2 setuptools
~=0.8.0 aiofiles
~=0.0.5 python-multipart


زبان مورد نیاز

مقدار نام
>=3.8 Python


نحوه نصب


نصب پکیج whl carvekit-4.0.8:

    pip install carvekit-4.0.8.whl


نصب پکیج tar.gz carvekit-4.0.8:

    pip install carvekit-4.0.8.tar.gz