معرفی شرکت ها


canonical-sets-0.0.3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Exposing Algorithmic Bias with Canonical Sets.
ویژگی مقدار
سیستم عامل -
نام فایل canonical-sets-0.0.3
نام canonical-sets
نسخه کتابخانه 0.0.3
نگهدارنده ['Andres Algaba']
ایمیل نگهدارنده ['andres.algaba@vub.be']
نویسنده Integrated Intelligence Lab
ایمیل نویسنده -
آدرس صفحه اصلی https://data.research.vub.be/
آدرس اینترنتی https://pypi.org/project/canonical-sets/
مجوز MIT
.. |nbsp| unicode:: U+00A0 .. NO-BREAK SPACE .. |pic1| image:: https://img.shields.io/badge/python-3.8%20%7C%203.9%20%7C%203.10-blue .. |pic2| image:: https://img.shields.io/github/license/mashape/apistatus.svg .. |pic3| image:: https://img.shields.io/badge/code%20style-black-000000.svg .. |pic4| image:: https://img.shields.io/badge/%20type_checker-mypy-%231674b1?style=flat .. |pic5| image:: https://img.shields.io/badge/platform-windows%20%7C%20linux%20%7C%20macos-lightgrey .. |pic6| image:: https://github.com/Integrated-Intelligence-Lab/canonical_sets/actions/workflows/testing.yml/badge.svg .. |pic7| image:: https://img.shields.io/readthedocs/canonical_sets .. |pic8| image:: https://img.shields.io/pypi/v/canonical_sets .. _canonical_sets: https://github.com/Integrated-Intelligence-Lab/canonical_sets/tree/main/canonical_sets .. _examples: https://github.com/Integrated-Intelligence-Lab/canonical_sets/tree/main/examples .. _contribute: https://github.com/Integrated-Intelligence-Lab/canonical_sets/blob/main/CONTRIBUTING.rst .. _documentation: https://canonical-sets.readthedocs.io/en/latest/ .. _LUCID: https://arxiv.org/abs/2208.12786 .. _LUCID-GAN: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4289597 .. _Twitter: https://twitter.com/DataLabBE .. _website: https://data.research.vub.be/ .. _papers: https://researchportal.vub.be/en/organisations/data-analytics-laboratory/publications/ .. _ctgan: https://github.com/sdv-dev/CTGAN .. _PR: https://github.com/sdv-dev/CTGAN/pulls/AndresAlgaba Canonical sets ============== |pic2| |nbsp| |pic5| |nbsp| |pic1| |nbsp| |pic8| |pic6| |nbsp| |pic7| |nbsp| |pic3| |nbsp| |pic4| AI systems can create, propagate, support, and automate bias in decision-making processes. To mitigate biased decisions, we both need to understand the origin of the bias and define what it means for an algorithm to make fair decisions. By Locating Unfairness through Canonical Inverse Design (LUCID), we generate a canonical set that shows the desired inputs for a model given a preferred output. The canonical set reveals the model's internal logic and exposes potential unethical biases by repeatedly interrogating the decision-making process. LUCID-GAN extends on LUCID by generating canonical inputs via a conditional generative model instead of gradient-based inverse design. LUCID-GAN generates canonical inputs conditional on the predictions of the model under fairness evaluation. LUCID-GAN has several benefits, including that it applies to non-differentiable models, ensures that a canonical set consists of realistic inputs, and allows us to assess indirect discrimination and explicitly check for intersectional unfairness. Read our paper on `LUCID`_ and `LUCID-GAN`_ for more details, or check out the `documentation`_. We encourage everyone to `contribute`_ to this project by submitting an issue or a pull request! Installation ------------ Install ``canonical_sets`` from PyPi. .. code-block:: bash pip install canonical_sets For development install, see `contribute`_. You can also check the `documentation`_. Usage ----- LUCID ~~~~~ ``LUCID`` can be used for the gradient-based inverse design to generate canonical sets, and is available for both ``PyTorch`` and ``Tensorflow`` models. It only requires a model, a preferred output, and an example input (which is often a part of the training data). The results are stored in a ``pd.DataFrame``, and can be accessed by calling ``results``. It's fully customizable, but can also be used out-of-the-box for a wide range of applications by using its default settings: .. code-block:: python import pandas as pd from canonical_sets.data import Adult from canonical_sets.models import ClassifierTF from canonical_sets import LUCID adult = Adult() model = ClassifierTF(2) outputs = pd.DataFrame([[0, 1]], columns=["<=50K", ">50K"]) example_data = adult.train_data lucid = LUCID(model, outputs, example_data) lucid.results.head() LUCID-GAN ~~~~~~~~~ ``LUCIDGAN`` generates canonical sets by using conditional generative models (GANs). This approach has several benefits, including that it applies to non--differentiable models, ensures that a canonical set consists of realistic inputs, and allows us to assess indirect discrimination and explicitly check for intersectional unfairness. LUCID-GAN only requires the input and predictions of a black-box model. It's fully customizable, but can also be used out-of-the-box for a wide range of applications by using its default settings: .. code-block:: python import pandas as pd from canonical_sets.data import Adult from canonical_sets.models import ClassifierTF from canonical_sets import LUCIDGAN model = ClassifierTF(2) adult = Adult() # we need original data as LUCID-GAN does some preprocessing test_data = adult.inverse_preprocess(adult.test_data) # we only require the predictions for the positive class preds = model.predict(adult.test_data.to_numpy())[:, 1] data = pd.concat([test_data, pd.DataFrame(preds, columns=["preds"])], axis=1) lucidgan = LUCIDGAN(epochs=5) lucidgan.fit(data, conditional=["preds"]) samples = lucidgan.sample(100, conditional=pd.DataFrame({"preds": [1]})) samples.head() For detailed examples see `examples`_ and for the source code see `canonical_sets`_. For ``LUCID``, we advice to start with either the ``tensorflow`` or ``pytorch`` example, and then the advanced example. For ``LUCIDGAN``, you can replicate the experiments from the paper with the ``GAN_adult`` and ``GAN_compas`` examples. You can also check the `documentation`_ for more details. If you have any remaining questions, feel free to submit an issue or PR! Output-based group metrics ~~~~~~~~~~~~~~~~~~~~~~~~~~ Most group fairness notions focus on the equality of outcome by computing statistical parity metrics on a model's output. The two most prominent examples of these statistical output-based metrics are Demographic Parity (DP) and Equality Of Opportunity (EOP). In DP, we compare the Positivity Rate (PR) of the subpopulations under fairness evaluation, and in EOP, we compare the True Positive Rate (TPR). The choice between DP and EOP depends on the underlying assumptions and worldview of the evaluator. The ``Metrics`` class allows you to compute these metrics for binary classification tasks given the predictions and ground truth: .. code-block:: python from canonical_sets.data import Adult from canonical_sets.models import ClassifierTF from canonical_sets.group import Metrics model = ClassifierTF(2) adult = Adult() preds = model.predict(adult.test_data.to_numpy()).argmax(axis=1) targets = adult.test_labels[">50K"] metrics = Metrics(preds, targets) metrics.metrics Data ---- ``canonical_sets`` contains some functionality to easily access commonly used data sets in the fairness literature: .. code-block:: python from canonical_sets import Adult, Compas adult = Adult() adult.train_data.head() compas = Compas() compas.train_data.head() The default settings can be customized to change the pre-processing, splitting, etc. See `examples`_ for details. You can also check the `documentation`_. Community --------- If you are interested in cross-disciplinary research related to machine learning, feel free to: * Follow DataLab on `Twitter`_. * Check the `website`_. * Read our `papers`_. Disclaimer ---------- The package and the code is provided "as-is" and there is NO WARRANTY of any kind. Use it only if the content and output files make sense to you. Acknowledgements ---------------- This project benefited from financial support from Innoviris. ``LUCIDGAN`` is based on the ``CTGAN`` class from the `ctgan`_ package. It has been extended to fix several bugs (see my `PR`_ on the `CTGAN`_ GitHub page) and to allow for the extension of the conditional vector. A part of the code and comments is identical to the original ``CTGAN`` class. Citation -------- .. code-block:: none @inproceedings{mazijn_lucid_2023, title={{LUCID: Exposing Algorithmic Bias through Inverse Design}}, author={Mazijn, Carmen and Prunkl, Carina and Algaba, Andres and Danckaert, Jan and Ginis, Vincent}, booktitle={Thirty-Seventh AAAI Conference on Artificial Intelligence (accepted)}, year={2023}, } @article{algaba_lucidgan_2022, title={{LUCID-GAN: Conditional Generative Models to Locate Unfairness}}, author={Algaba, Andres and Mazijn, Carmen and Prunkl, Carina and Danckaert, Jan and Ginis, Vincent}, year={2022}, journal={Working paper} }


نیازمندی

مقدار نام
>=3.5.2 matplotlib
>=0.12.0 seaborn
>=1.22 numpy
>=1.4.2 pandas
>=1.11.0 torch
>=2.9.1,<2.11) tensorflow
>=2.9.1,<2.11) tensorflow
>=2.9.1,<2.11) tensorflow-macos
>=1.1.1 scikit-learn
>=4.64.0 tqdm
>=0.7.0 ctgan
>=1.9.0 scipy


زبان مورد نیاز

مقدار نام
>=3.8,<3.11 Python


نحوه نصب


نصب پکیج whl canonical-sets-0.0.3:

    pip install canonical-sets-0.0.3.whl


نصب پکیج tar.gz canonical-sets-0.0.3:

    pip install canonical-sets-0.0.3.tar.gz