معرفی شرکت ها


came-0.1.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

cell-type assignment and gene module extraction of scRNA-seq
ویژگی مقدار
سیستم عامل -
نام فایل came-0.1.9
نام came
نسخه کتابخانه 0.1.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Xingyan Liu
ایمیل نویسنده 544568643@qq.com
آدرس صفحه اصلی https://github.com/XingyanLiu/CAME
آدرس اینترنتی https://pypi.org/project/came/
مجوز MIT
# CAME **English** | [简体中文](README_CH.md) CAME is a tool for **Cell-type Assignment and Module Extraction**, based on a heterogeneous graph neural network. For detailed usage, please refer to [CAME-Documentation](https://xingyanliu.github.io/CAME/index.html). <img src="docs/_images/Fig1ABC.png" width="600"/> CAME outputs the quantitative cell-type assignment for each query cell, that is, the probabilities of cell types that exist in the reference species, which enables the identification of the unresolved cell states in the query data. Besides, CAME gives the aligned cell and gene embeddings across species, which facilitates low-dimensional visualization and joint gene-module extraction. <img src="docs/_images/Fig1D.png" width="600"/> ### Installation It's recommended to create a conda environment for running CAME: ```shell conda create -n env_came python=3.8 conda activate env_came ``` Install required packages: ```shell pip install "scanpy[leiden]" pip install torch # >=1.8 pip install dgl # tested on 0.7.2 ``` See [Scanpy](https://scanpy.readthedocs.io/en/stable/), [PyTorch](https://pytorch.org/) and [DGL](https://www.dgl.ai/) for detailed installation guide (especially for GPU version). Install CAME by PyPI: ```shell pip install came ``` Install the developmental version of CAME from source code: ```shell git clone https://github.com/XingyanLiu/CAME.git cd CAME python setup.py install ``` ### Example data The test code is based on the sample data attached to the CAME package. It is initially saved in compressed form (`CAME/came/sample_data.zip`), and will be automatically decompressed to the default directory (`CAME/came/sample_data/`) when necessary, which contains the following files: - gene_matches_1v1_human2mouse.csv (optional) - gene_matches_1v1_mouse2human.csv (optional) - gene_matches_human2mouse.csv - gene_matches_mouse2human.csv - raw-Baron_mouse.h5ad - raw-Baron_human.h5ad You can access these data by ``came.load_example_data()``. If you tend to apply CAME to analyze your own datasets, you need to prepare at least the last two files for the same species (e.g., cross-dataset integration); For cross-species analysis, you need to provide another `.csv` file where the first column contains the genes in the reference species and the second contains the corresponding query homologous genes. > NOTE: > the file `raw-Baron_human.h5ad` is a subsample from the original data > for code testing. The resulting annotation accuracy may not be as good as > using the full dataset as the reference. ### Test CAME's pipeline (optional) To test the package, run the python file `test_pipeline.py`: ```python # test_pipeline.py import came if __name__ == '__main__': came.__test1__(6, batch_size=2048) came.__test2__(6, batch_size=None) ``` ```shell python test_pipeline.py ``` ### Contribute * Issue Tracker: https://github.com/XingyanLiu/CAME/issues * Source Code: * https://github.com/zhanglabtools/CAME * https://github.com/XingyanLiu/CAME (the developmental version) ### Support If you are having issues, please let us know. We have a mailing list located at: * xingyan@amss.ac.cn * 544568643@qq.com ### Citation If CAME is useful for your research, consider citing our preprint: > Cross-species cell-type assignment of single-cell RNA-seq by a heterogeneous graph neural network. Xingyan Liu, Qunlun Shen, Shihua Zhang. bioRxiv 2021.09.25.461790; doi: https://doi.org/10.1101/2021.09.25.461790


نیازمندی

مقدار نام
- scanpy
- torch
- dgl


زبان مورد نیاز

مقدار نام
>=3.8.0 Python


نحوه نصب


نصب پکیج whl came-0.1.9:

    pip install came-0.1.9.whl


نصب پکیج tar.gz came-0.1.9:

    pip install came-0.1.9.tar.gz