معرفی شرکت ها


calbert-1.0.3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Code-mixed Adaptive Language representations using BERT
ویژگی مقدار
سیستم عامل -
نام فایل calbert-1.0.3
نام calbert
نسخه کتابخانه 1.0.3
نگهدارنده ['Aronya Baksy']
ایمیل نگهدارنده ['abaksy@gmail.com']
نویسنده Aditeya Baral
ایمیل نویسنده aditeya.baral@gmail.com
آدرس صفحه اصلی https://github.com/aditeyabaral/calbert
آدرس اینترنتی https://pypi.org/project/calbert/
مجوز MIT
# CalBERT - Code-mixed Apaptive Language representations using BERT This repository contains the source code for [CalBERT - Code-mixed Apaptive Language representations using BERT](http://ceur-ws.org/Vol-3121/short3.pdf), published at AAAI-MAKE 2022, Stanford University. CalBERT can be used to adapt existing Transformer language representations into another similar language by minimising the semantic space between equivalent sentences in those languages, thus allowing the Transformer to learn representations for words across two languages. It relies on a novel pre-training architecture named Siamese Pre-training to learn task-agnostic and language-agnostic representations. For more information, please refer to the paper. This framework allows you to perform CalBERT's Siamese Pre-training to learn representations for your own data and can be used to obtain dense vector representations for words, sentences or paragraphs. The base models used to train CalBERT consist of BERT-based Transformer models such as BERT, RoBERTa, XLM, XLNet, DistilBERT, and so on. CalBERT achieves state-of-the-art results on the SAIL and IIT-P Product Reviews datasets. CalBERT is also one of the only models able to learn code-mixed language representations without the need for traditional pre-training methods and is currently one of the few models available for Indian code-mixing such as Hinglish. # Installation We recommend `Python 3.9` or higher for CalBERT. ## Install PyTorch Follow [PyTorch - Get Started](https://pytorch.org/get-started/locally/) for further details on how to install PyTorch with or without CUDA. ## Install CalBERT ### Install with pip ```bash pip install calbert ``` ### Install from source You can also clone the current version from the [repository](https://github.com/aditeyabaral/calbert) and then directly install the package. ```bash pip install -e . ``` # Getting Started You can read the [docs](https://calbert.readthedocs.io/en/latest/) to learn more about how to train CalBERT for your own use case. The following example shows you how to use CalBERT to obtain sentence embeddings. # Training This framework allows you to also train your own CalBERT models on your own code-mixed data so you can learn embeddings for your custom code-mixed languages. There are various options to choose from in order to get the best embeddings for your language. First, initialise a model with the base Transformer ```python from calbert import CalBERT model = CalBERT('bert-base-uncased') ``` Create a CalBERTDataset using your sentences ```python from calbert import CalBERTDataset base_language_sentences = [ "I am going to Delhi today via flight", "This movie is awesome!" ] target_language_sentences = [ "Main aaj flight lekar Delhi ja raha hoon.", "Mujhe yeh movie bahut awesome lagi!" ] dataset = CalBERTDataset(base_language_sentences, target_language_sentences) ``` Then create a trainer and train the model ```python from calbert import SiamesePreTrainer trainer = SiamesePreTrainer(model, dataset) trainer.train() ``` # Performance Our models achieve state-of-the-art results on the SAIL and IIT-P Product Reviews datasets. More information will be added soon. # Application and Uses This framework can be used for: - Computing code-mixed as well as plain sentence embeddings - Obtaining semantic similarities between any two sentences - Other textual tasks such as clustering, text summarization, semantic search and many more. # Citing and Authors If you find this repository useful, please cite our publication [CalBERT - Code-mixed Apaptive Language representations using BERT](http://ceur-ws.org/Vol-3121/short3.pdf). ```bibtex @inproceedings{calbert-baral-et-al-2022, author = {Aditeya Baral and Aronya Baksy and Ansh Sarkar and Deeksha D and Ashwini M. Joshi}, editor = {Andreas Martin and Knut Hinkelmann and Hans{-}Georg Fill and Aurona Gerber and Doug Lenat and Reinhard Stolle and Frank van Harmelen}, title = {CalBERT - Code-Mixed Adaptive Language Representations Using {BERT}}, booktitle = {Proceedings of the {AAAI} 2022 Spring Symposium on Machine Learning and Knowledge Engineering for Hybrid Intelligence {(AAAI-MAKE} 2022), Stanford University, Palo Alto, California, USA, March 21-23, 2022}, series = {{CEUR} Workshop Proceedings}, volume = {3121}, publisher = {CEUR-WS.org}, year = {2022}, url = {http://ceur-ws.org/Vol-3121/short3.pdf}, timestamp = {Fri, 22 Apr 2022 14:55:37 +0200} } ``` # Contact Please feel free to contact us by emailing us to report any issues or suggestions, or if you have any further questions. Contact: - [Aditeya Baral](https://aditeyabaral.github.io/), [aditeya.baral@gmail.com](mailto:aditeya.baral@gmail.com) You can also contact the other maintainers listed below. - [Aronya Baksy](mailto:abaksy@gmail.com) - [Ansh Sarkar](mailto:anshsarkar1@gmail.com) - [Deeksha D](mailto:deekshad132@gmail.com)


زبان مورد نیاز

مقدار نام
>=3.7.0 Python


نحوه نصب


نصب پکیج whl calbert-1.0.3:

    pip install calbert-1.0.3.whl


نصب پکیج tar.gz calbert-1.0.3:

    pip install calbert-1.0.3.tar.gz