معرفی شرکت ها


cag-1.5.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

This is a general framework to create arango db graphs and annotate them.
ویژگی مقدار
سیستم عامل -
نام فایل cag-1.5.0
نام cag
نسخه کتابخانه 1.5.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده -
ایمیل نویسنده Roxanne El Baff <roxanne.elbaff@dlr.de>, Tobias Hecking <tobias.hecking@dlr.de>
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/cag/
مجوز -
<h1 align="center">Welcome to the Corpus Annotation Graph Builder <code>(CAG)</code> </h1> <p align="center"> <a href="https://pypi.org/project/cag/"><img src="https://badge.fury.io/py/cag.svg" alt="Badge: PyPI version" height="18"></a> <a href="https://img.shields.io/badge/Made%20with-Python-1f425f.svg"> <img src="https://img.shields.io/badge/Made%20with-Python-1f425f.svg" alt="Badge: Made with Python"/> </a> <a href="https://open.vscode.dev/DLR-SC/corpus-annotation-graph-builder"> <img alt="Badge: Open in VSCode" src="https://img.shields.io/static/v1?logo=visualstudiocode&label=&message=open%20in%20visual%20studio%20code&labelColor=2c2c32&color=007acc&logoColor=007acc" target="_blank" /> </a> <a href="https://github.com/psf/black"><img src="https://img.shields.io/badge/code%20style-black-000000.svg" alt="Badge: Black" height="18"></a> <a href="https://zenodo.org/badge/latestdoi/572124344"><img src="https://zenodo.org/badge/572124344.svg" alt="DOI"></a> <a href="https://github.com/DLR-SC/corpus-annotation-graph-builder/blob/master/LICENSE"> <img alt="License: MIT" src="https://img.shields.io/badge/license-MIT-yellow.svg" target="_blank" /> </a> <a href="https://twitter.com/dlr_software"> <img alt="Twitter: DLR Software" src="https://img.shields.io/twitter/follow/dlr_software.svg?style=social" target="_blank" /> </a> </p> > `cag` is a Python Library offering an architectural framework to employ the build-annotate pattern when building Graphs. --- [Paper video](https://drive.google.com/drive/folders/1KE4NT2NQyfj4VYsAdQAE8WoBpGWA33O0?usp=sharing). **Corpus Annotation Graph builder (CAG)** is an *architectural framework* that employs the *build-and-annotate* pattern for creating a graph. CAG is built on top of [ArangoDB](https://www.arangodb.com) and its Python drivers ([PyArango](https://pyarango.readthedocs.io/en/latest/)). The *build-and-annotate* pattern consists of two phases (see Figure below): (1) data is collected from different sources (e.g., publication databases, online encyclopedias, news feeds, web portals, electronic libraries, repositories, media platforms) and preprocessed to build the core nodes, which we call *Objects of Interest*. The component responsible for this phase is the **Graph-Creator**. (2) Annotations are extracted from the OOIs, and corresponding annotation nodes are created and linked to the core nodes. The component dealing with this phase is the **Graph-Annotator**. ![cag](https://github.com/DLR-SC/corpus-annotation-graph-builder/blob/main/docs/cag.png?raw=true) This framework aims to offer researchers a flexible but unified and reproducible way of organizing and maintaining their interlinked document collections in a Corpus Annotation Graph. ## Installation ### Direct install via pip The package can also be installed directly via pip. ``` pip install cag ``` This will allow you to use the module **`cag`** from any python script locally. The two main packages are **`cag.framework`** and **`cag.view_wrapper`**. ### Manual cloning Clone the repository, go to the root folder and then run: ``` pip install -e . ``` ## Usage * After the installation, a project scaffold can be created with the command `cag start-project` * Graph Creation [[jupyter notebook](https://github.com/DLR-SC/corpus-annotation-graph-builder/blob/main/examples/1_create_graph.ipynb)] * Graph Annotation [[jupyter notebook](https://github.com/DLR-SC/corpus-annotation-graph-builder/blob/main/examples/2_annotate_graph.ipynb)] ## Citation Please cite us in case you use CAG @InProceedings{elbaffdemo:2023, author = {Roxanne {El Baff} and Tobias Hecking and Andreas Hamm and Jasper W. Korte and Sabine Bartsch}, title = {Corpus {A}nnotation {G}raph Builder ({CAG}): An Architectural Framework to Create and Annotate a Multi-source Graph}, booktitle = {The 17th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2023): : System Demonstrations }, month = "may", year = "2023" address = "Dubrovnik, Croatia", publisher = "Association for Computational Linguistics", } ## Zenodo refs v1.4.0 [![DOI](https://zenodo.org/badge/572124344.svg)](https://zenodo.org/badge/latestdoi/572124344)


نیازمندی

مقدار نام
- dataclasses>=0.6
- spacy>=3.4.1
- spacy_arguing_lexicon>=0.0.3
- empath>=0.89
- pytest>=7.1.2
- networkx>=2.8.5
- nltk>=3.4.5
- pyvis>=0.2.1
- tqdm>=4.43.0
- python-arango>=7.4.1
- pyArango>=2.0.1
- tomli>=2.0.1
- transformers>=4.26.1
- tenacity>=8.2.2
- pandas
- python-slugify~=6.1.2
- rich~=12.6.0
- cookiecutter>=2.1.1
- pip-tools
- pytest


زبان مورد نیاز

مقدار نام
>=3.8 Python


نحوه نصب


نصب پکیج whl cag-1.5.0:

    pip install cag-1.5.0.whl


نصب پکیج tar.gz cag-1.5.0:

    pip install cag-1.5.0.tar.gz