معرفی شرکت ها


caddiepy-0.2.5


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

The python package to the Cancer Driver Drug Interaction Explorer (CADDIE)
ویژگی مقدار
سیستم عامل -
نام فایل caddiepy-0.2.5
نام caddiepy
نسخه کتابخانه 0.2.5
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Maiykol
ایمیل نویسنده michael.hartung@uni-hamburg.de
آدرس صفحه اصلی http://pypi.python.org/pypi/caddiepy/
آدرس اینترنتی https://pypi.org/project/caddiepy/
مجوز LICENSE
<p align="center"> <img alt="CADDIE Logo" src="https://github.com/Maiykol/caddiepy/blob/main/caddie_logo.png?raw=true" /> </p> # caddiepy The python package to the <a href="https://exbio.wzw.tum.de/caddie/" target="_blank">Cancer Driver Drug Interaction Explorer (CADDIE)</a>. It provides an interface for a variety of CADDIEs functionalities, giving the user the possibility to execute tasks on CADDIE programmatically without using the website. This allows to run a larger number of drug-target search or drug repurposing tasks and to implement CADDIE into your programs. For more information about CADDIE, visit the <a href="https://exbio.wzw.tum.de/caddie/documentation" target="_blank">documentation</a>. # Working example ``` import caddiepy gene_list = ['PTEN', 'MYC'] # verify that genes exist in CADDIE caddie_gene_list = caddiepy.api.map_gene_id(gene_list).json()['genes'] task = caddiepy.Task('drug', 'network_proximity', [gene['graphId'] for gene in caddie_gene_list]) # customize parameters task.set_parameter('result_size', 5) task.set_parameter('include_indirect_drugs', True) task.set_parameter('gene_interaction_datasets', ['IID']) task.set_parameter('drug_interaction_datasets', ['DrugBank']) # start task task.run() # get result when task is finished, if task is still running wait until it is finished result = task.get_result() ``` # Pipeline example (drug target search folled by drug search) Note: The following pipeline can also be called as: ``` gene_list = ['FBXW7', 'PTEN', 'MYC'] resulting_drugs = caddiepy.pipeline(gene_list)['drugObjects'] ``` ``` gene_list = ['FBXW7', 'PTEN', 'MYC'] # verify that genes exist in CADDIE caddie_gene_list = caddiepy.api.map_gene_id(gene_list).json()['genes'] task = caddiepy.Task('drug-target', 'multi-steiner', [gene['graphId'] for gene in caddie_gene_list]) # customize parameters task.set_parameter('result_size', 20) task.set_parameter('gene_interaction_datasets', ['BioGRID']) # start task task.run() # get result when task is finished, if task is still running wait until it is finished result_drug_targets = task.get_result() task = caddiepy.Task('drug', 'trustrank', result_drug_targets['network']['nodes']) # customize parameters task.set_parameter('result_size', 20) task.set_parameter('include_indirect_drugs', True) task.set_parameter('gene_interaction_datasets', ['IID']) task.set_parameter('drug_interaction_datasets', ['DrugBank']) # start task task.run() # get result when task is finished, if task is still running wait until it is finished resulting_drugs = task.get_result()['drugObjects'] ``` # How to use ## Import Import the module: ``` import caddiepy ``` ## 2 Steps to repurpose drugs and find drug-targets Step 1: Map genes to CADDIE gene IDs. This step is necessary to verify the genes exist in the CADDIE database. The gene objects returned contains a mapping to different IDs. ``` # gene list is a list of gene identifiers: entrez, uniprot ac or hugo caddiepy.api.map_gene_id(gene_list) # example to receive list of caddie IDs caddie_gene_list = caddiepy.api.map_gene_id(gene_list).json()['genes'] caddie_gene_id_list = [gene['graphId'] for gene in caddie_gene_list] ``` Step 2: Use CADDIE IDs to find putative drug-targets or candidate drugs using one of CADDIEs algorithms Drug-target algorithms: - multisteiner - keypathwayminer - trustrank - harmonic_centraliy - degree_centraliy - betweenness_centraliy Drug algorithms: - trustrank - harmonic_centraliy - degree_centraliy - network_proximity ``` # target is either 'drug' or 'drug-target' # caddie_gene_id_list is a list of caddie gene IDs (like g123, g234, ...) task = caddiepy.Task(target, algorithm, caddie_gene_id_list) # set parameters like this (for a full list of parameters and the available datasets look below) task.set_parameter('result_size', 50) task.set_parameter('gene_interaction_datasets', [gene_interaction_dataset1, gene_interaction_dataset2, ...]) task.set_parameter('drug_interaction_datasets', [drug_interaction_dataset1, drug_interaction_dataset2, ...]) # start task task.run() # get result when task is finished, if task is still running wait until it is finished result = task.get_result() ``` ## Algorithm parameters The full list of parameters for each algorithm (for an explanation, visit the <a href="https://exbio.wzw.tum.de/caddie/documentation" target="_blank">documentation</a>). For all available input options (dataset names, cancer-types) see below. ``` # multisteiner task.set_parameter('num_trees', 5) task.set_parameter('tolerance', 10) task.set_parameter('hub_penalty', 0) task.set_parameter('max_deg', sys.maxsize) task.set_parameter('gene_interaction_datasets', gene_interaction_dataset_list) task.set_parameter('mutation_cancer_type', mutation_cancer_type) task.set_parameter('expression_cancer_type', expression_cancer_type) task.set_parameter('tissue', tissue) # keypathwayminer task.set_parameter('k', 5) # trustrank task.set_parameter('damping_factor', 0.85) task.set_parameter('hub_penalty', 0) task.set_parameter('max_deg', sys.maxsize) task.set_parameter('gene_interaction_datasets', gene_interaction_dataset_list) task.set_parameter('drug_interaction_datasets', drug_interaction_dataset_list) task.set_parameter('mutation_cancer_type', mutation_cancer_type) task.set_parameter('expression_cancer_type', expression_cancer_type) task.set_parameter('tissue', tissue) task.set_parameter('include_nutraceutical_drugs', boolean) task.set_parameter('only_atc_l_drugs', boolean) task.set_parameter('include_indirect_drugs', boolean) task.set_parameter('include_non_approved_drugs', boolean) task.set_parameter('filter_paths', boolean) task.set_parameter('available_drugs', available_drug_list) # only avaibale if drug_interaction_dataset_list = ['drugbank'] task.set_parameter('drug_target_action', drug_effect) # degree_centrality task.set_parameter('hub_penalty', 0) task.set_parameter('max_deg', sys.maxsize) task.set_parameter('gene_interaction_datasets', gene_interaction_dataset_list) task.set_parameter('drug_interaction_datasets', drug_interaction_dataset_list) task.set_parameter('mutation_cancer_type', mutation_cancer_type) task.set_parameter('expression_cancer_type', expression_cancer_type) task.set_parameter('tissue', tissue) task.set_parameter('include_nutraceutical_drugs', boolean) task.set_parameter('only_atc_l_drugs', boolean) task.set_parameter('include_indirect_drugs', boolean) task.set_parameter('include_non_approved_drugs', boolean) task.set_parameter('filter_paths', boolean) task.set_parameter('available_drugs', available_drug_list) # only avaibale if drug_interaction_dataset_list = ['drugbank'] task.set_parameter('drug_target_action', drug_effect) # harmonic_centrality task.set_parameter('hub_penalty', 0) task.set_parameter('max_deg', sys.maxsize) task.set_parameter('gene_interaction_datasets', gene_interaction_dataset_list) task.set_parameter('drug_interaction_datasets', drug_interaction_dataset_list) task.set_parameter('mutation_cancer_type', mutation_cancer_type) task.set_parameter('expression_cancer_type', expression_cancer_type) task.set_parameter('tissue', tissue) task.set_parameter('include_nutraceutical_drugs', boolean) task.set_parameter('only_atc_l_drugs', boolean) task.set_parameter('include_indirect_drugs', boolean) task.set_parameter('include_non_approved_drugs', boolean) task.set_parameter('filter_paths', boolean) task.set_parameter('available_drugs', available_drug_list) # only avaibale if drug_interaction_dataset_list = ['drugbank'] task.set_parameter('drug_target_action', drug_effect) # betweenness_centrality task.set_parameter('hub_penalty', 0) task.set_parameter('max_deg', sys.maxsize) task.set_parameter('gene_interaction_datasets', gene_interaction_dataset_list) task.set_parameter('mutation_cancer_type', mutation_cancer_type) task.set_parameter('expression_cancer_type', expression_cancer_type) task.set_parameter('tissue', tissue) task.set_parameter('filter_paths', boolean) # network_proximity task.set_parameter('hub_penalty', 0) task.set_parameter('max_deg', sys.maxsize) task.set_parameter('gene_interaction_datasets', gene_interaction_dataset_list) task.set_parameter('drug_interaction_datasets', drug_interaction_dataset_list) task.set_parameter('mutation_cancer_type', mutation_cancer_type) task.set_parameter('expression_cancer_type', expression_cancer_type) task.set_parameter('tissue', tissue) task.set_parameter('include_nutraceutical_drugs', boolean) task.set_parameter('only_atc_l_drugs', boolean) task.set_parameter('include_indirect_drugs', boolean) task.set_parameter('include_non_approved_drugs', boolean) task.set_parameter('filter_paths', boolean) task.set_parameter('available_drugs', available_drug_list) # only avaibale if drug_interaction_dataset_list = ['drugbank'] task.set_parameter('drug_target_action', drug_effect) ``` ## List all available datasets List all available gene interaction datasets: ``` caddiepy.api.get_gene_interaction_datasets().json() ``` List all available drug interaction datasets: ``` caddiepy.api.get_drug_interaction_datasets().json() ``` List all available tissues: ``` caddiepy.api.get_tissues().json() ``` List all available expression cancer types: ``` caddiepy.api.get_expression_cancer_types().json() ``` List all available mutation cancer types: ``` caddiepy.api.get_mutation_cancer_types().json() ``` List all available drug effects (only relevant when working with DrugBank): ``` caddiepy.api.get_drug_effects().json() ``` Look up drugs in the CADDIE database and their interactions with genes: ``` caddiepy.api.drug_lookup(search_string, database_name) ``` ## Logging Configure the logging level like this: ``` import logging logging.basicConfig(level=logging.DEBUG) ```


نحوه نصب


نصب پکیج whl caddiepy-0.2.5:

    pip install caddiepy-0.2.5.whl


نصب پکیج tar.gz caddiepy-0.2.5:

    pip install caddiepy-0.2.5.tar.gz