معرفی شرکت ها


cacp-0.4.0a0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

-
ویژگی مقدار
سیستم عامل -
نام فایل cacp-0.4.0a0
نام cacp
نسخه کتابخانه 0.4.0a0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Sylwester Czmil
ایمیل نویسنده sylwekczmil@gmail.com
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/cacp/
مجوز -
=================================================== CACP: Classification Algorithms Comparison Pipeline =================================================== .. image:: https://img.shields.io/pypi/v/cacp.svg :target: https://pypi.python.org/pypi/cacp .. image:: https://github.com/sylwekczmil/cacp/actions/workflows/tox.yml/badge.svg :target: https://github.com/sylwekczmil/cacp/actions/workflows/tox.yml .. image:: https://readthedocs.org/projects/cacp/badge/?version=latest :target: https://cacp.readthedocs.io/en/latest/?version=latest :alt: Documentation Status * Free software: MIT license * Documentation: https://cacp.readthedocs.io. * Article: https://doi.org/10.1016/j.softx.2022.101134 Description ------------- CACP is made for comparing newly developed classification algorithms (both traditional and incremental) in Python with other commonly used classifiers to evaluate classification performance, reproducibility, and statistical reliability. CACP simplifies the entire classifier evaluation process. Installation -------------- To install cacp, run this command in your terminal: .. code-block:: console pip install cacp Usage ------ Jupyter Notebook on Kaggle: https://www.kaggle.com/sc4444/cacp-example-usage Simple Usage -------------- An example usage of this library is included in the package: https://github.com/sylwekczmil/cacp/tree/main/cacp_examples_simple. .. code:: python3 from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from cacp import run_experiment, ClassificationDataset # select datasets experimental_datasets = [ ClassificationDataset('iris'), ClassificationDataset('wisconsin'), ClassificationDataset('pima'), ClassificationDataset('wdbc'), ] # select classifiers experimental_classifiers = [ ('SVC', lambda n_inputs, n_classes: SVC()), ('DT', lambda n_inputs, n_classes: DecisionTreeClassifier(max_depth=5)), ('RF', lambda n_inputs, n_classes: RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1)), ('KNN', lambda n_inputs, n_classes: KNeighborsClassifier(3)), ] # trigger experiment run run_experiment( experimental_datasets, experimental_classifiers, results_directory='./example_result' ) Advanced Usage --------------- An advanced example usage of this library is included in the package: https://github.com/sylwekczmil/cacp/tree/main/cacp_examples. .. code:: python3 from sklearn.neighbors import KNeighborsClassifier from skmultiflow.lazy import KNNClassifier from skmultiflow.meta import LearnPPNSEClassifier from cacp import all_datasets, run_experiment, ClassificationDataset from cacp_examples.classifiers import CLASSIFIERS from cacp_examples.example_custom_classifiers.xgboost import XGBoost # you can specify datasets by name, all of them will be automatically downloaded experimental_datasets_example = [ ClassificationDataset('iris'), ClassificationDataset('wisconsin'), ClassificationDataset('pima'), ClassificationDataset('sonar'), ClassificationDataset('wdbc'), ] # or use all datasets experimental_datasets = all_datasets() # same for classifiers, you can specify list of classifiers experimental_classifiers_example = [ ('KNN_3', lambda n_inputs, n_classes: KNeighborsClassifier(3)), # you can define classifiers multiple times with different parameters ('KNN_5', lambda n_inputs, n_classes: KNeighborsClassifier(5)), # you can use classifiers from any lib that # supports fit/predict methods eg. scikit-learn/scikit-multiflow ('KNNI', lambda n_inputs, n_classes: KNNClassifier(n_neighbors=3)), # you can also use wrapped algorithms from other libs or custom implementations ('XGB', lambda n_inputs, n_classes: XGBoost()), ('LPPNSEC', lambda n_inputs, n_classes: LearnPPNSEClassifier()) ] # or you can use predefined ones experimental_classifiers = CLASSIFIERS # this is how you trigger experiment run run_experiment( experimental_datasets, experimental_classifiers, results_directory='./example_result' ) Defining custom classifier wrapper: https://github.com/sylwekczmil/cacp/tree/main/cacp_examples/example_custom_classifiers/xgboost.py. Defining custom dataset: https://github.com/sylwekczmil/cacp/tree/main/cacp_examples/example_custom_datasets/random_dataset.py Defining local dataset: https://github.com/sylwekczmil/cacp/tree/main/cacp_examples/example_custom_datasets/local_dataset.py Incremental Algorithms Usage ----------------------------- An example usage of this library for incremental classifiers is included in the package: https://github.com/sylwekczmil/cacp/tree/main/cacp_examples_incremental. .. code:: python3 import river from river.ensemble import AdaptiveRandomForestClassifier from river.naive_bayes import GaussianNB from river.neighbors import KNNClassifier from river.tree import HoeffdingTreeClassifier from cacp import run_incremental_experiment, ClassificationDataset if __name__ == '__main__': # select datasets experimental_datasets = [ ClassificationDataset('iris'), ClassificationDataset('wisconsin'), # you can use datasets from river river.datasets.Phishing(), river.datasets.Bananas(), ] # select incremental classifiers experimental_classifiers = [ ('ARF', lambda n_inputs, n_classes: AdaptiveRandomForestClassifier()), ('HAT', lambda n_inputs, n_classes: HoeffdingTreeClassifier()), ('KNN', lambda n_inputs, n_classes: KNNClassifier()), ('GNB', lambda n_inputs, n_classes: GaussianNB()), ] # trigger experiment run run_incremental_experiment( experimental_datasets, experimental_classifiers, results_directory='./example_result' )


نیازمندی

مقدار نام
>=3.0.3,<4.0.0 Jinja2
>=1.1.0,<2.0.0 joblib
>=3.3.4,<4.0.0 matplotlib
>=1.21.6,<2.0.0 numpy
>=1.3.5,<2.0.0 pandas
>=1.0.2,<2.0.0 scikit-learn
>=4.62.3,<5.0.0 tqdm
>=4.1.1,<5.0.0 typing-extensions
>=0.11.1,<0.12.0 river


زبان مورد نیاز

مقدار نام
>=3.8.0,<3.11 Python


نحوه نصب


نصب پکیج whl cacp-0.4.0a0:

    pip install cacp-0.4.0a0.whl


نصب پکیج tar.gz cacp-0.4.0a0:

    pip install cacp-0.4.0a0.tar.gz