معرفی شرکت ها


cached-interpolate-0.1.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Efficient repeated evaluation of splines at fixed points.
ویژگی مقدار
سیستم عامل -
نام فایل cached-interpolate-0.1.0
نام cached-interpolate
نسخه کتابخانه 0.1.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Colm Talbot
ایمیل نویسنده colm.talbot@ligo.org
آدرس صفحه اصلی https://github.com/ColmTalbot/cached_interpolation
آدرس اینترنتی https://pypi.org/project/cached-interpolate/
مجوز MIT
[![Python Unit Testing using Conda](https://github.com/ColmTalbot/cached_interpolation/actions/workflows/test.yml/badge.svg)](https://github.com/ColmTalbot/cached_interpolation/actions/workflows/test.yml) [![codecov](https://codecov.io/gh/ColmTalbot/cached_interpolation/branch/main/graph/badge.svg?token=6VK8HRADHQ)](https://codecov.io/gh/ColmTalbot/cached_interpolation) # cached_interpolate Efficient evaluation of interpolants at fixed points. When performing a Bayesian analysis with a stochastic sampler however, one sometimes has to evaluate many interpolants (representing the parameterized model) at the same set of points (the data) with the same knot points. Evaluating interpolants typically requires two stages: 1. finding the closest knot of the interpolant to the new point and the distance from that knot. 2. evaluating the interpolant at that point. When we have identical knots and evaluation points but different functions being approximated the first of these stages is done many times unnecessarily. This can be made more efficient by caching the locations of the evaluation points leaving just the evaluation of the interpolation coefficients to be done at each iteration. A further advantage of this, is that it allows trivially parallising the interpolation using `cupy`. This package implements this caching for nearest neighbour, linear, and cubic interpolation. ### Installation Currently this is only installable by downloading the source and installing locally. ```console $ git clone git@github.com:ColmTalbot/cached_interpolation.git $ cd cached_interpolation $ pip install . ``` ### Demonstration We can compare the interpolation to the `scipy.interpolate.CubicSpline` implementation. ```python import numpy as np import matplotlib.pyplot as plt from scipy.interpolate import CubicSpline from cached_interpolate import CachingInterpolant x_nodes = np.linspace(0, 1, 10) y_nodes = np.random.uniform(-1, 1, 10) evaluation_points = np.sort(np.random.uniform(0, 1, 10000)) interpolant = CachingInterpolant(x=x_nodes, y=y_nodes, kind="cubic") sp_interpolant = CubicSpline(x=x_nodes, y=y_nodes, bc_type="natural") figure, axes = plt.subplots(nrows=2, gridspec_kw={'height_ratios': [3, 1]}, sharex=True) axes[0].plot(evaluation_points, interpolant(evaluation_points)) axes[0].plot(evaluation_points, sp_interpolant(evaluation_points)) axes[0].scatter(x_nodes, y_nodes, color="k") axes[1].plot(evaluation_points, interpolant(evaluation_points) - sp_interpolant(evaluation_points)) axes[0].set_ylabel("$y$") axes[1].set_xlabel("$x$") axes[1].set_ylabel("$\\Delta y$") axes[1].set_xlim(0, 1) plt.tight_layout() plt.show() plt.close(figure) ``` ![comparison](https://github.com/ColmTalbot/cached_interpolation/blob/a68c9475c2c07514de08957aafee86ed271b7c89/spline_comparison.png) I note here that we use the "natural" boundary condition. This means that first and second derivatives of the spline vanish at the endpoints. This is different from the default "not-a-knot" boundary condition used in `scipy`. We can now evaluate this interpolant in a loop to demonstrate the performance of the caching. At every iteration we change the function being interpolated by randomly setting the `y` argument. Before the loop, we add an initial call to set up the cache as this will be much slower than the following iterations. ```python import time import numpy as np from scipy.interpolate import CubicSpline from cached_interpolate import CachingInterpolant x_nodes = np.linspace(0, 1, 10) y_nodes = np.random.uniform(-1, 1, 10) evaluation_points = np.random.uniform(0, 1, 10000) interpolant = CachingInterpolant(x=x_nodes, y=y_nodes, kind="cubic") sp_interpolant = CubicSpline(x=x_nodes, y=y_nodes, bc_type="natural") interpolant(x=evaluation_points, y=y_nodes) n_iterations = 1000 start = time.time() for _ in range(n_iterations): y_nodes = np.random.uniform(-1, 1, 10) interpolant(x=evaluation_points, y=y_nodes) stop = time.time() print(f"Cached time = {(stop - start):.3f}s for {n_iterations} iterations.") start = time.time() for _ in range(n_iterations): y_nodes = np.random.uniform(-1, 1, 10) CubicSpline(x=x_nodes, y=y_nodes, bc_type="natural")(evaluation_points) stop = time.time() print(f"Scipy time = {(stop - start):.3f}s for {n_iterations} iterations.") ``` ```console Cached time = 0.187s for 1000 iterations. Scipy time = 0.450s for 1000 iterations. ``` We've gained a factor of ~2.5 over the `scipy` version without caching. If this is the dominant cost in a simulation that takes a week to run, this is a big improvement. If we need to evaluate for a new set of points, we have to tell the interpolant to reset the cache. There are two ways to do this: - create a new interpolant, this will require reevaluating the interplation coefficients. - disable the evaluation point caching. ```python import numpy as np from scipy.interpolant import CubicSpline from cached_interpolate import CachingInterpolant x_nodes = np.linspace(0, 1, 10) y_nodes = np.random.uniform(-1, 1, 10) evaluation_points = np.random.uniform(0, 1, 10000) interpolant = CachingInterpolant(x=x_nodes, y=y_nodes, kind="cubic") interpolated_values = interpolant(evaluation_points) new_evaluation_points = np.random.uniform(0, 1, 1000) interpolant(x=new_evaluation_points, use_cache=False) ``` Using the code in this way is much slower than `scipy` and so not practically very useful. If you have access to an `Nvidia` GPU and are evaluating the spline at ~ O(10^5) or more points you may want to switch to the `cupy` backend. This uses `cupy` just for the evaluation stage, not for computing the interpolation coefficients. ```python import cupy as cp import numpy as np from cached_interpolate import CachingInterpolant x_nodes = np.linspace(0, 1, 10) y_nodes = np.random.uniform(-1, 1, 10) evaluation_points = np.random.uniform(0, 1, 10000) evaluation_points = cp.asarray(evaluation_points) interpolant = CachingInterpolant(x=x_nodes, y=y_nodes, backend=cp) interpolated_values = interpolant(evaluation_points) ``` We can now repeat our timing test. To make the use of a GPU more realistic we'll increase the number of evaluation points. ```python import time import cupy as cp import numpy as np from scipy.interpolate import CubicSpline from cached_interpolate import CachingInterpolant x_nodes = np.linspace(0, 1, 10) y_nodes = np.random.uniform(-1, 1, 10) evaluation_points = np.random.uniform(0, 1, 100000) cp_evaluation_points = cp.asarray(evaluation_points) interpolant = CachingInterpolant(x=x_nodes, y=y_nodes, kind="cubic") cp_interpolant = CachingInterpolant(x=x_nodes, y=y_nodes, kind="cubic", backend=cp) sp_interpolant = CubicSpline(x=x_nodes, y=y_nodes, bc_type="natural") interpolant(x=evaluation_points) cp_interpolant(x=cp_evaluation_points) n_iterations = 1000 start = time.time() for _ in range(n_iterations): y_nodes = np.random.uniform(-1, 1, 10) interpolant(x=evaluation_points, y=np.random.uniform(-1, 1, 10)) stop = time.time() print(f"CPU cached time = {(stop - start):.3f}s for {n_iterations} iterations.") start = time.time() for _ in range(n_iterations): y_nodes = np.random.uniform(-1, 1, 10) CubicSpline(x=x_nodes, y=y_nodes, bc_type="natural")(evaluation_points) stop = time.time() print(f"Scipy time = {(stop - start):.3f}s for {n_iterations} iterations.") start = time.time() for _ in range(n_iterations): y_nodes = np.random.uniform(-1, 1, 10) cp_interpolant(x=cp_evaluation_points, y=np.random.uniform(-1, 1, 10)) stop = time.time() print(f"GPU cached time = {(stop - start):.3f}s for {n_iterations} iterations.") ``` ```console CPU cached time = 3.367s for 1000 iterations. Scipy time = 4.213s for 1000 iterations. GPU cached time = 0.212s for 1000 iterations. ``` While there are likely more optimizations that can be made and improved flexibility in the implementation, we can see that the GPU version is well over an order of magnitude faster than either of the CPU versions. If you have any comments/questions feel free to contact me through the issue tracker or a pull request.


نیازمندی

مقدار نام
- numpy


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl cached-interpolate-0.1.0:

    pip install cached-interpolate-0.1.0.whl


نصب پکیج tar.gz cached-interpolate-0.1.0:

    pip install cached-interpolate-0.1.0.tar.gz