معرفی شرکت ها


c3py-0.0.7


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Compressed Continuous Computation Library in Python
ویژگی مقدار
سیستم عامل -
نام فایل c3py-0.0.7
نام c3py
نسخه کتابخانه 0.0.7
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Alex Gorodetsky
ایمیل نویسنده alex@alexgorodetsky.com
آدرس صفحه اصلی https://github.com/goroda/compressed-continuous-computation
آدرس اینترنتی https://pypi.org/project/c3py/
مجوز -
# Compressed Continuous Computation (C3) > Computing with functions The Compressed Continuous Computation (C3) package is intended to make it easy to perform continuous linear and multilinear algebra with multidimensional functions. It works by representing multidimensional functions in a low-rank format. Common tasks include taking "matrix" decompositions of vector- or matrix-valued functions, adding or multiplying functions together, integrating multidimensional functions, and much much more. The following is a sampling of capabilities * Adaptive approximation of a black-box model (specified as a function pointer) * Regression of a model from data * Both linear and nonlinear approximation * Approximation in polynomial, piecewise polynomial, linear element, and radial basis function spaces * General adaptive integration schemes * Differentiation * Multiplication * Addition * Rounding * Computing Jacobians and Hessians * UQ 1) Expectation and variance 2) Sobol sensitivities In addition to the above capabilities, which are unique to the C3 package, I also have general optimization routines including * BFGS * LBFGS * Gradient descent * Stochastic Gradient with ADAM Documentation of most functions is provided by Doxygen [here.](http://alexgorodetsky.com/c3doc/html/index.html) ### Installation / Getting started The dependencies for this code are 1) BLAS 2) LAPACK 3) SWIG (if building non-C interfaces) 4) CMake Usually, these dependencies can be installed via the package manager of your system (apt or brew or port) ## From Source ```shell git clone https://github.com/goroda/Compressed-Continuous-Computation.git c3 cd c3 mkdir build cd build cmake .. make ``` This will install all shared libraries into c3/build/src. The main shared library is libc3, the rest are all submodules. To install to a particular location use ``` shell cmake .. -DCMAKE_INSTALL_PREFIX=/your/choice make install ``` ## Python interface You can install the python interface using the pip utility through ``` shell pip install pathlib pip install c3py ``` One can obtain some examples in the pyexamples subdirectory ``` shell python pywrappers/pytest.py ``` An alternative way to install it is to download the git repository and then run ``` shell python setup.py build python setup.py install ``` One workflow that works well is to install this package in a new virtual environment. For instance using conda one can run the following (from the c3 directory) ``` shell conda create -n c3pyenv python=3.7 conda activate c3pyenv pip install numpy python setup.py build python setup.py install ``` If you have an old version installed and would like to upgrade the following command is effective at removing all old code and reinstalling ``` shell pip install --upgrade --force-reinstall c3py ``` ## Configuration Options The following configuration options take boolean (true/false) values #### BUILD_STATIC_LIB Default: `OFF' Using this option can toggle whether or not static or shared libraries should be built. **Note: This option cannot be set to ON if building the python wrapper** #### BUILD_SUB_LIBS Default: `OFF' Using this option can toggle whether or not to build each sub-library into its own library #### BUILD_TESTS Default: `OFF' Using this option can toggle whether or not to build unit tests #### BUILD_EXAMPLES Default: `OFF' Using this option can toggle whether or not to compile exampels #### BUILD_PROFILING Default: `OFF' Using this option can toggle whether or not to compile the profiling executables #### BUILD_BENCHMARKS Default: `OFF' Using this option can toggle whether or not to compile the benchmarks tests #### BUILD_UTILITIES Default: `OFF' Using this option can toggle whether or not to compile the utilities #### LIB_VISIBILITY_OFF Default: `OFF' Using this option addes the flag `-fvisibility=hidden` to compilation. Useful when embedding this library in a C++ library to hide its symbols. ## Systems I have tested on 1) Mac OS X with clang version 8.0 2) Ubuntu with gcc version 5.0 ## Solutions to some possible problems ### Error: Unable to find 'python.swg' On Mac OS X, if SWIG is installed with macports using ```shell sudo port install swig ``` then the above error might occur. To remedy this error install the swig-python package ```shell sudo port install swig-python ``` ### (On Mac OS X) Error: stdio.h not found This happens on some updated versions of Mac OS X. To solve this, the following StackOverflow thread seems to work https://stackoverflow.com/questions/52509602/cant-compile-c-program-on-a-mac-after-upgrade-to-mojave ### Numpy errors Sometimes you may see the following errors ``` shell _frozen_importlib:219: RuntimeWarning: numpy.ufunc size changed, may indicate binary incompatibility. Expected 216, got 192 ``` or ``` shell RuntimeError: The current Numpy installation ('/Users/alex/anaconda3/envs/pytorch/lib/python3.6/site-packages/numpy/__init__.py') fails to pass simple sanity checks. This can be caused for example by incorrect BLAS library being linked in, or by mixing package managers (pip, conda, apt, ...). Search closed numpy issues for similar problems. ``` One way that I have found (https://stackoverflow.com/a/47975375) that seems to solve this is to upgrade numpy by running the following command. I am really not sure why this works ... ``` shell sudo pip install numpy --upgrade --ignore-installed ``` ## Coding practices I aim to document (with Doxygen) every function available to the user and provide a unit test. Furthermore, I won't push code to the master branch that has memory leaks. I am constantly looking for more suggestions for improving the robustness of the code if any issues are encountered. ## Contributing Please open a Github issue to ask a question, report a bug, or to request features. To contribute, fork the repository and setup a branch. Author: [Alex A. Gorodetsky](https://www.alexgorodetsky.com) Contact: [goroda@umich.edu](mailto:goroda@umich.edu) Copyright (c) 2014-2016, Massachusetts Institute of Technology Copyright (c) 2016-2017, Sandia National Laboratories Copyright (c) 2018-2021, University of Michigan License: BSD


نیازمندی

مقدار نام
- numpy
- pathlib


نحوه نصب


نصب پکیج whl c3py-0.0.7:

    pip install c3py-0.0.7.whl


نصب پکیج tar.gz c3py-0.0.7:

    pip install c3py-0.0.7.tar.gz