معرفی شرکت ها


bytehub-0.4.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

ByteHub Timeseries Feature Store
ویژگی مقدار
سیستم عامل -
نام فایل bytehub-0.4.0
نام bytehub
نسخه کتابخانه 0.4.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده ByteHub AI Limited
ایمیل نویسنده -
آدرس صفحه اصلی https://bytehub.ai
آدرس اینترنتی https://pypi.org/project/bytehub/
مجوز -
# ByteHub [![PyPI Latest Release](https://img.shields.io/pypi/v/bytehub.svg)](https://pypi.org/project/bytehub/) [![Issues](https://img.shields.io/github/workflow/status/bytehub-ai/bytehub/Tests)](https://github.com/bytehub-ai/bytehub/actions?query=workflow%3ATests) [![Issues](https://img.shields.io/github/issues/bytehub-ai/bytehub)](https://github.com/bytehub-ai/bytehub/issues) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) <img src="https://uploads-ssl.webflow.com/5f187c12c1b99c41557b035e/6026e99dad5c3cf816547670_bytehub-rect-logo.png" align="right" alt="ByteHub logo" width="120" height="60"> An easy-to-use feature store. ## 💾 What is a feature store? A feature store is a data storage system for data science and machine-learning. It can store _raw data_ and also transformed _features_, which can be fed straight into an ML model or training script. Feature stores allow data scientists and engineers to be **more productive** by organising the flow of data into models. The [Bytehub Feature Store](https://www.bytehub.ai) is designed to: * Be simple to use, with a Pandas-like API; * Require no complicated infrastructure, running on a local Python installation or in a cloud environment; * Be optimised towards timeseries operations, making it highly suited to applications such as those in finance, energy, forecasting; and * Support simple time/value data as well as complex structures, e.g. dictionaries. It is built on [Dask](https://dask.org/) to support large datasets and cluster compute environments. ## 🦉 Features * Searchable **feature information** and **metadata** can be stored locally using SQLite or in a remote database. * Timeseries data is saved in [Parquet format](https://parquet.apache.org/) using Dask, making it readable from a wide range of other tools. Data can reside either on a local filesystem or in a [cloud storage service](https://docs.dask.org/en/latest/remote-data-services.html), e.g. AWS S3. * Supports **timeseries joins**, along with **filtering** and **resampling** operations to make it easy to load and prepare datasets for ML training. * Feature engineering steps can be implemented as **transforms**. These are saved within the feature store, and allows for simple, resusable preparation of raw data. * **Time travel** can retrieve feature values based on when they were created, which can be useful for forecasting applications. * Simple APIs to retrieve timeseries dataframes for training, or a dictionary of the most recent feature values, which can be used for inference. Also available as **[☁️ ByteHub Cloud](https://bytehub.ai)**: a ready-to-use, cloud-hosted feature store. ## 📖 Documentation and tutorials See the [ByteHub documentation](https://docs.bytehub.ai/) and [notebook tutorials](https://github.com/bytehub-ai/code-examples/tree/main/tutorials) to learn more and get started. ## 🚀 Quick-start Install using pip: ```sh pip install bytehub ``` Create a local SQLite feature store by running: ```python import bytehub as bh import pandas as pd fs = bh.FeatureStore() ``` Data lives inside _namespaces_ within each feature store. They can be used to separate projects or environments. Create a namespace as follows: ```python fs.create_namespace( 'tutorial', url='/tmp/featurestore/tutorial', description='Tutorial datasets' ) ``` Create a _feature_ inside this namespace which will be used to store a timeseries of pre-prepared data: ```python fs.create_feature('tutorial/numbers', description='Timeseries of numbers') ``` Now save some data into the feature store: ```python dts = pd.date_range('2020-01-01', '2021-02-09') df = pd.DataFrame({'time': dts, 'value': list(range(len(dts)))}) fs.save_dataframe(df, 'tutorial/numbers') ``` The data is now stored, ready to be transformed, resampled, merged with other data, and fed to machine-learning models. We can engineer new features from existing ones using the _transform_ decorator. Suppose we want to define a new feature that contains the squared values of `tutorial/numbers`: ```python @fs.transform('tutorial/squared', from_features=['tutorial/numbers']) def squared_numbers(df): # This transform function receives dataframe input, and defines a transform operation return df ** 2 # Square the input ``` Now both features are saved in the feature store, and can be queried using: ```python df_query = fs.load_dataframe( ['tutorial/numbers', 'tutorial/squared'], from_date='2021-01-01', to_date='2021-01-31' ) ``` To connect to ByteHub Cloud, first [register for an account](https://www.bytehub.ai/feature-store/request-access), then use: ```python fs = bh.FeatureStore("https://api.bytehub.ai") ``` This will allow you to store features in your own private namespace on ByteHub Cloud, and save datasets to an AWS S3 storage bucket. ## 🐾 Roadmap * _Tasks_ to automate updates to features using orchestration tools like [Airflow](https://airflow.apache.org/)


نیازمندی

مقدار نام
>=1.1 pandas
>=3.0 pyarrow
>=2021 dask[dataframe,delayed]
>=1.3.0 cloudpickle
>=1.3 SQLAlchemy
>=1.5 alembic
>=2 requests
>=1.1 requests-oauthlib
==0.4 s3fs
>=0.6 adlfs
==0.4 s3fs
- pytest
- black
- bump2version
- jupyterlab
- pre-commit
- pdoc3
==0.8 gcsfs


نحوه نصب


نصب پکیج whl bytehub-0.4.0:

    pip install bytehub-0.4.0.whl


نصب پکیج tar.gz bytehub-0.4.0:

    pip install bytehub-0.4.0.tar.gz