معرفی شرکت ها


bulwark-0.6.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A python package for defensive data analysis.
ویژگی مقدار
سیستم عامل -
نام فایل bulwark-0.6.1
نام bulwark
نسخه کتابخانه 0.6.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Zax Rosenberg
ایمیل نویسنده zaxr@protonmail.com
آدرس صفحه اصلی https://github.com/zaxr/bulwark
آدرس اینترنتی https://pypi.org/project/bulwark/
مجوز -
Bulwark's Documentation ======================================== <a href="https://pypi.org/project/bulwark/"><img src="https://img.shields.io/pypi/dm/bulwark?style=for-the-badge" alt="downloads" /></a> <a href="https://pypi.org/project/bulwark/"><img src="https://img.shields.io/pypi/v/bulwark?style=for-the-badge" alt="latest release" /></a> <a href="https://pypi.org/project/bulwark/"><img src="https://img.shields.io/pypi/pyversions/bulwark?style=for-the-badge" alt="supported python versions" /></a> <a href="https://pypi.org/project/bulwark/"><img src="https://img.shields.io/pypi/status/bulwark?style=for-the-badge" alt="package status" /></a> <a href="https://anaconda.org/conda-forge/bulwark"><img src="https://img.shields.io/conda/pn/conda-forge/bulwark?style=for-the-badge" alt="conda" /></a> <a href="https://github.com/ZaxR/bulwark/blob/master/LICENSE"><img src="https://img.shields.io/pypi/l/bulwark?style=for-the-badge" alt="license" /></a> <a href="https://travis-ci.com/ZaxR/bulwark"><img src="https://img.shields.io/travis/com/ZaxR/bulwark?style=for-the-badge" alt="travis build status" /></a> <a href="https://bulwark.readthedocs.io/en/latest/"><img src="https://img.shields.io/readthedocs/bulwark/latest?style=for-the-badge" alt="docs build status" /></a> <a href="https://codecov.io/gh/ZaxR/bulwark"><img src="https://img.shields.io/codecov/c/github/zaxr/bulwark?style=for-the-badge&token=79c0ebb7eba84f56845fbc3073a0cb18" alt="coverage status" /></a> Bulwark is a package for convenient property-based testing of pandas dataframes. Documentation: https://bulwark.readthedocs.io/en/latest/index.html This project was heavily influenced by the no-longer-supported [Engarde](https://github.com/TomAugspurger/engarde) library by Tom Augspurger(thanks for the head start, Tom!), which itself was modeled after the R library [assertr](https://github.com/ropenscilabs/assertr). Why? ==== Data are messy, and pandas is one of the go-to libraries for analyzing tabular data. In the real world, data analysts and scientists often feel like they don't have the time or energy to think of and write tests for their data. Bulwark's goal is to let you check that your data meets your assumptions of what it should look like at any (and every) step in your code, without making you work too hard. Installation ============= ```bash pip install bulwark ``` or ```bash conda install -c conda-forge bulwark ``` Note that the latest version of Bulwark will only be compatible with newer version of Python, Numpy, and Pandas. This is to encourage upgrades that themselves can help minimize bugs, allow Bulwark to take advantage of the latest language/library features, reduce the technical debt of maintaining Bulwark, and to be consistent with Numpy's community version support recommendation in [NEP 29](https://numpy.org/neps/nep-0029-deprecation_policy.html). See the table below for officially supported versions: | Bulwark | Python | Numpy | Pandas | |:-------:|:------:|:------:|:--------:| | 0.6.0 | >=3.6 | >=1.15 | >=0.23.0 | | <=0.5.3 | >=3.5 | >=1.8 | >=0.16.2 | | | | | | Usage ===== Bulwark comes with checks for many of the common assumptions you might want to validate for the functions that make up your ETL pipeline, and lets you toss those checks as decorators on the functions you're already writing: ```python import bulwark.decorators as dc @dc.IsShape((-1, 10)) @dc.IsMonotonic(strict=True) @dc.HasNoNans() def compute(df): # complex operations to determine result ... return result_df ``` Still want to have more robust test files? Bulwark's got you covered there, too, with importable functions. ```python import bulwark.checks as ck df.pipe(ck.has_no_nans()) ``` Won't I have to go clean up all those decorators when I'm ready to go to production? Nope - just toggle the built-in "enabled" flag available for every decorator. ```python @dc.IsShape((3, 2), enabled=False) def compute(df): # complex operations to determine result ... return result_df ``` What if the test I want isn't part of the library? Use the built-in `CustomCheck` to use your own custom function! ```python import bulwark.checks as ck import bulwark.decorators as dc import numpy as np import pandas as pd def len_longer_than(df, l): if len(df) <= l: raise AssertionError("df is not as long as expected.") return df @dc.CustomCheck(len_longer_than, 10, enabled=False) def append_a_df(df, df2): return df.append(df2, ignore_index=True) df = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) df2 = pd.DataFrame({"a": [1, np.nan, 3, 4], "b": [4, 5, 6, 7]}) append_a_df(df, df2) # doesn't fail because the check is disabled ``` What if I want to run a lot of tests and want to see all the errors at once? You can use the built-in `MultiCheck`. It will collect all of the errors and either display a warning message of throw an exception based on the `warn` flag. You can even use custom functions with MultiCheck: ```python def len_longer_than(df, l): if len(df) <= l: raise AssertionError("df is not as long as expected.") return df # `checks` takes a dict of function: dict of params for that function. # Note that those function params EXCLUDE df. # Also note that when you use MultiCheck, there's no need to use CustomCheck - just feed in the function. @dc.MultiCheck(checks={ck.has_no_nans: {"columns": None}, len_longer_than: {"l": 6}}, warn=False) def append_a_df(df, df2): return df.append(df2, ignore_index=True) df = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) df2 = pd.DataFrame({"a": [1, np.nan, 3, 4], "b": [4, 5, 6, 7]}) append_a_df(df, df2) ``` See [examples](https://bulwark.readthedocs.io/en/latest/examples.html) to see more advanced usage. ## Contributing Bulwark is always looking for new contributors! We work hard to make contributing as easy as possible, and previous open source experience is not required! Please see [contributing.md](docs/contributing.md) for how to get started. Thank you to all our past contributors, especially these folks: [![](https://sourcerer.io/fame/ZaxR/ZaxR/bulwark/images/0)](https://sourcerer.io/fame/ZaxR/ZaxR/bulwark/links/0)[![](https://sourcerer.io/fame/ZaxR/ZaxR/bulwark/images/1)](https://sourcerer.io/fame/ZaxR/ZaxR/bulwark/links/1)[![](https://sourcerer.io/fame/ZaxR/ZaxR/bulwark/images/2)](https://sourcerer.io/fame/ZaxR/ZaxR/bulwark/links/2)[![](https://sourcerer.io/fame/ZaxR/ZaxR/bulwark/images/3)](https://sourcerer.io/fame/ZaxR/ZaxR/bulwark/links/3)[![](https://sourcerer.io/fame/ZaxR/ZaxR/bulwark/images/4)](https://sourcerer.io/fame/ZaxR/ZaxR/bulwark/links/4)[![](https://sourcerer.io/fame/ZaxR/ZaxR/bulwark/images/5)](https://sourcerer.io/fame/ZaxR/ZaxR/bulwark/links/5)[![](https://sourcerer.io/fame/ZaxR/ZaxR/bulwark/images/6)](https://sourcerer.io/fame/ZaxR/ZaxR/bulwark/links/6)[![](https://sourcerer.io/fame/ZaxR/ZaxR/bulwark/images/7)](https://sourcerer.io/fame/ZaxR/ZaxR/bulwark/links/7)


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl bulwark-0.6.1:

    pip install bulwark-0.6.1.whl


نصب پکیج tar.gz bulwark-0.6.1:

    pip install bulwark-0.6.1.tar.gz