معرفی شرکت ها


bulldozer-dtm-1.0.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Bulldozer is a DTM extraction tool requiring only a DSM as input
ویژگی مقدار
سیستم عامل -
نام فایل bulldozer-dtm-1.0.0
نام bulldozer-dtm
نسخه کتابخانه 1.0.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده CNES
ایمیل نویسنده pierre.lassalle@cnes.fr,dimitri.lallement@cnes.fr,yannick.ott@thalesgroup.com
آدرس صفحه اصلی https://github.com/CNES/bulldozer
آدرس اینترنتی https://pypi.org/project/bulldozer-dtm/
مجوز Apache V2.0
<div align="center"> <img src="docs/source/images/bulldozer_logo.png" width=256 > **Bulldozer, a DTM extraction tool requiring only a DSM as input.** [![Python](https://img.shields.io/badge/python-v3.8+-blue.svg)](https://www.python.org/downloads/release/python-380/) [![Contributions welcome](https://img.shields.io/badge/contributions-welcome-orange.svg)](CONTRIBUTING.md) [![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0) [![PyPI Version](https://img.shields.io/pypi/v/bulldozer?color=%2334D058&label=pypi%20package)](https://pypi.org/project/bulldozer/) <p align="center"> <a href="#key-features">Key Features</a> • <a href="#installation">Installation</a> • <a href="#quick-start">Quick Start</a> • <a href="#documentation">Documentation</a> • <a href="#contribute">Contribute</a> • <a href="#licence">Licence</a> • <a href="#reference">Reference</a> </p> </div> --- ## Key features <div align="center"> <img src="docs/source/images/result_overview.gif" alt="drawing" width="400"/> </div> **Bulldozer** is designed as a pipeline of standalone functions that aims to extract a *Digital Terrain Model* (DTM) from a *Digital Surface Model* (DSM). But you can also use one of the following function without running the full pipeline: * **DSM preprocessing** * **Nodata extraction:** a group of methods to differentiate and extract nodata related to failed correlations during the DSM computation and those of the image border * **Disturbed areas detection:** a method to locate disturbed areas. These noisy areas are mainly related to areas in which the correlator has incorrectly estimated the elevation (water or shadow areas). * **DTM extraction** * **DTM computation:** the main method that extracts the DTM from the preprocessed DSM. * **DTM postprocessing** * **Pits detection:** a method to detect pits in the provided raster and return the corresponding mask. * **Pits filling:** a method to fill pits in the generated DTM (or input raster). * **DHM computation:** a method to extract the *Digital Height Model* (DHM). For more information about these functions and how to call them, please refer to the <a href="#notebooks">notebook documentation section</a>. ## Installation ### Using Pypi You can install **Bulldozer** by running the following command: ```sh pip install bulldozer-dtm ``` ### Using Github It is recommended to install **Bulldozer** into a virtual environment, like [conda](https://docs.conda.io/en/latest/) or [virtualenv](https://virtualenv.pypa.io/en/latest/). * Installation with `virtualenv`: ```sh # Clone the project git clone https://github.com/CNES/bulldozer.git cd bulldozer/ # Create the environment python -m venv bulldozer_venv source bulldozer_venv/bin/activate # Install the library pip install . ``` ## Quick Start 1. First you have to create a configuration file or edit the `configuration_template.yaml` available in the `conf` directory. You have to update at least the following parameters: ```yaml # Input DSM path (expected format: "<folder_1>/<folder_2>/<file>.<[tif/tiff]>") dsmPath : "<input_dsm.tif>" # Output directory path (if the directory doesn't exist, create it) outputDir : "<output_dir>" ``` 2. Run the pipeline: * Through CLI *(Command Line Interface)* ```console bulldozer --conf conf/configuration_template.yaml ``` * Through Python API using the config file ```python from bulldozer.pipeline.bulldozer_pipeline import dsm_to_dtm dsm_to_dtm(config_path="conf/configuration_template.yaml") ``` * Through Python API providing directly the input parameters (missing parameters will be replaced by default values) ```python from bulldozer.pipeline.bulldozer_pipeline import dsm_to_dtm # Example with a specific number of workers dsm_to_dtm(dsm_path="<input_dsm.tif>", output_dir="<output_dir>", nb_max_workers=16) ``` 3. ✅ Done! Your DTM is available in the *<output_dir>* ## Documentation ### Notebooks For each section described in <a href="#key-features">Key Features</a> section you can follow one of the tutorial notebook: * [Running Bulldozer (full pipeline)](docs/notebooks/0_bulldozer_pipeline.ipynb) * [Preprocessing standalone functions](docs/notebooks/1_preprocess.ipynb) * [Extraction step](docs/notebooks/2_DTM_extraction.ipynb) * [Postprocessing standalone functions](docs/notebooks/3_postprocess.ipynb) ### Full documentation (WIP) **Bulldozer** also has a more detailed documentation. A high-level overview of how it’s organized will help you know where to look for certain things: * [Tutorials](docs/tutorials/index.md) take you by the hand through a series of steps to create a DLCooker application. Start here if you’re new to DLCooker. * [How-to guides](docs/how-to/index.md) are recipes. They guide you through the steps involved in addressing key problems and use-cases. They are more advanced than tutorials and assume some knowledge of how DLCooker works. * [Explanation guides](docs/explanation/index.md) discuss key topics and concepts at a fairly high level and provide useful background information and explanation. > **_NOTE:_** The documentation is not available online yet, it needs to be built manually. To do so, please execute the following command at the root: ```console mkdocs serve ``` ## Contribute To do a bug report or a contribution, see the [**Contribution Guide**](CONTRIBUTING.md). for any help or suggestion, feel free to contact the authors: - Dimitri Lallement : dimitri.lallement@cnes.fr - Pierre Lassalle : pierre.lassalle@cnes.fr ## Licence **Bulldozer** has a Apache V2.0 license, as found in the [LICENSE](LICENSE) file. ## Credits Please refer to the [Authors file](AUTHORS.md). ## Reference [D. Lallement, P. Lassalle, Y. Ott, R. Demortier, and J. Delvit, 2022. BULLDOZER: AN AUTOMATIC SELF-DRIVEN LARGE SCALE DTM EXTRACTION METHOD FROM DIGITAL SURFACE MODEL. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences.](https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B2-2022/409/2022/)


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl bulldozer-dtm-1.0.0:

    pip install bulldozer-dtm-1.0.0.whl


نصب پکیج tar.gz bulldozer-dtm-1.0.0:

    pip install bulldozer-dtm-1.0.0.tar.gz