معرفی شرکت ها


brif-1.4.3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Build decision trees and random forests for classification and regression.
ویژگی مقدار
سیستم عامل -
نام فایل brif-1.4.3
نام brif
نسخه کتابخانه 1.4.3
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Yanchao Liu
ایمیل نویسنده yanchaoliu@wayne.edu
آدرس صفحه اصلی https://pypi.org/project/brif/
آدرس اینترنتی https://pypi.org/project/brif/
مجوز GPL3
# Description Build random forests for classification and regression problems. The same program is available on [CRAN](URL 'https://cran.r-project.org/web/packages/brif/index.html') for R users. # Installation For Python: ```bash pip install brif ``` For R: ```R install.packages('brif') ``` To use on Google Colab: ```python !pip install brif from brif import brif ``` # Examples ```python from brif import brif import pandas as pd # Create a brif object with default parameters. bf = brif.brif() # Display the current parameter values. bf.get_param() # To change certain parameter values, e.g.: bf.set_param({'ntrees':100, 'nthreads':2}) # Or simply: bf.ntrees = 200 # Load input data frame. Data must be a pandas data frame with appropriate headers. df = pd.read_csv("auto.csv") # Train the model bf.fit(df, 'origin') # specify the target column name # Or equivalently bf.fit(df, 7) # specify the target column index # Make predictions # The target variable column must be excluded, and all other columns should appear in the same order as in training # Here, predict the first 10 rows of df pred_labels = bf.predict(df.iloc[0:10, 0:7], type='class') # return a list containing the predicted class labels pred_scores = bf.predict(df.iloc[0:10, 0:7], type='score') # return a data frame containing predicted probabilities by class # Note: for a regression problem (i.e., when the response variable is numeric type), the predict function will always return a list containing the predicted values ``` # Parameters **tmp_preddata** a character string specifying a filename to save the temporary scoring data. Default is "tmp_brif_preddata.txt". **n_numeric_cuts** an integer value indicating the maximum number of split points to generate for each numeric variable. **n_integer_cuts** an integer value indicating the maximum number of split points to generate for each integer variable. **max_integer_classes** an integer value. If the target variable is integer and has more than max_integer_classes unique values in the training data, then the target variable will be grouped into max_integer_classes bins. If the target variable is numeric, then the smaller of max_integer_classes and the number of unique values number of bins will be created on the target variables and the regression problem will be solved as a classification problem. **max_depth** an integer specifying the maximum depth of each tree. Maximum is 40. **min_node_size** an integer specifying the minimum number of training cases a leaf node must contain. **ntrees** an integer specifying the number of trees in the forest. **ps** an integer indicating the number of predictors to sample at each node split. Default is 0, meaning to use sqrt(p), where p is the number of predictors in the input. **max_factor_levels** an integer. If any factor variables has more than max_factor_levels, the program stops and prompts the user to increase the value of this parameter if the too-many-level factor is indeed intended. **bagging_method** an integer indicating the bagging sampling method: 0 for sampling without replacement; 1 for sampling with replacement (bootstrapping). **bagging_proportion** a numeric scalar between 0 and 1, indicating the proportion of training observations to be used in each tree. **split_search** an integer indicating the choice of the split search method. 0: randomly pick a split point; 1: do a local search; 2: random pick subject to regulation; 3: local search subject to regulation; 4 or above: a mix of options 0 to 3. **search_radius** a positive integer indicating the split point search radius. This parameter takes effect only in the self-regulating local search (split_search = 2 or above). **seed** a positive integer, random number generator seed. **nthreads** an integer specifying the number of threads used by the program. This parameter takes effect only on systems supporting OpenMP. **vote_method** an integer (0 or 1) specifying the voting method in prediction. 0: each leaf contributes the raw count and an average is taken on the sum over all leaves; 1: each leaf contributes an intra-node fraction which is then averaged over all leaves with equal weight. **na_numeric** a numeric value, substitute for 'nan' in numeric variables. **na_integer** an integer value, substitute for 'nan' in integer variables. **na_factor** a character string, substitute for missing values in factor variables. **type** a character string indicating the return content of the predict function. For a classification problem, "score" means the by-class probabilities and "class" means the class labels (i.e., the target variable levels). For regression, the predicted values are returned. This is a parameter for the predict function, not an attribute of the brif object.


نیازمندی

مقدار نام
- numpy
- pandas


زبان مورد نیاز

مقدار نام
>=3.5 Python


نحوه نصب


نصب پکیج whl brif-1.4.3:

    pip install brif-1.4.3.whl


نصب پکیج tar.gz brif-1.4.3:

    pip install brif-1.4.3.tar.gz