معرفی شرکت ها


brevitas-0.9.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Quantization-aware training in PyTorch
ویژگی مقدار
سیستم عامل -
نام فایل brevitas-0.9.1
نام brevitas
نسخه کتابخانه 0.9.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Alessandro Pappalardo
ایمیل نویسنده alessand@amd.com
آدرس صفحه اصلی https://github.com/Xilinx/brevitas
آدرس اینترنتی https://pypi.org/project/brevitas/
مجوز -
# Brevitas [![Downloads](https://pepy.tech/badge/brevitas)](https://pepy.tech/project/brevitas) ![Pytest](https://github.com/Xilinx/brevitas/workflows/Pytest/badge.svg?branch=master) ![Examples Pytest](https://github.com/Xilinx/brevitas/workflows/Examples%20Pytest/badge.svg?branch=master) [![DOI](https://zenodo.org/badge/140494324.svg)](https://zenodo.org/badge/latestdoi/140494324) Brevitas is a PyTorch library for neural network quantization, with support for both *post-training quantization (PTQ)* and *quantization-aware training (QAT)*. **Please note that Brevitas is a research project and not an official Xilinx product.** If you like this project please consider ⭐ this repo, as it is the simplest and best way to support it. ## Requirements * Python >= 3.7 . * [Pytorch](https://pytorch.org) >= 1.5.1 . * Windows, Linux or macOS. * GPU training-time acceleration (*Optional* but recommended). ## Installation You can install the latest release from PyPI: ```bash pip install brevitas ``` ## Getting Started Brevitas currently offers quantized implementations of the most common PyTorch layers used in DNN under `brevitas.nn`, such as `QuantConv1d`, `QuantConv2d`, `QuantConvTranspose1d`, `QuantConvTranspose2d`, `QuantMultiheadAttention`, `QuantRNN`, `QuantLSTM` etc., for adoption within PTQ and/or QAT. For each one of these layers, quantization of different tensors (inputs, weights, bias, outputs, etc) can be individually tuned according to a wide range of quantization settings. As a reference for PTQ, Brevitas provides an example user flow for ImageNet classification models under [`brevitas_examples.imagenet_classification.ptq`](https://github.com/Xilinx/brevitas/blob/master/src/brevitas_examples/imagenet_classification/ptq/ptq_evaluate.py) that quantizes an input torchvision model using PTQ under different quantization configurations (e.g. bit-width, granularity of scale, etc). Sample accuracy results are available [here](https://github.com/Xilinx/brevitas/blob/master/src/brevitas_examples/imagenet_classification/ptq/RESULTS_TORCHVISION_BEST_CONFIGS.csv) for a selection of three reference topologies (ResNet18, MobileNet V2, ViT), under a variety of different quantization settings. For more info, checkout https://xilinx.github.io/brevitas/getting_started . ## Cite as If you adopt Brevitas in your work, please cite it as: ``` @software{brevitas, author = {Alessandro Pappalardo}, title = {Xilinx/brevitas}, year = {2022}, publisher = {Zenodo}, doi = {10.5281/zenodo.3333552}, url = {https://doi.org/10.5281/zenodo.3333552} } ``` ## History - *2023/04/21* - Release version 0.9.0, see the [release notes](https://github.com/Xilinx/brevitas/releases/tag/v0.9.0). - *2023/01/10* - Release version 0.8.0, see the [release notes](https://github.com/Xilinx/brevitas/releases/tag/v0.8.0). - *2021/12/13* - Release version 0.7.1, fix a bunch of issues. Added TVMCon 2021 tutorial notebook. - *2021/11/03* - Re-release version 0.7.0 (build 1) on PyPI to fix a packaging issue. - *2021/10/29* - Release version 0.7.0, see the [release notes](https://github.com/Xilinx/brevitas/releases/tag/v0.7.0). - *2021/06/04* - Release version 0.6.0, see the [release notes](https://github.com/Xilinx/brevitas/releases/tag/v0.6.0). - *2021/05/24* - Release version 0.5.1, fix a bunch of minor issues. See [release notes](https://github.com/Xilinx/brevitas/releases/tag/v0.5.1). - *2021/05/06* - Release version 0.5.0, see the [release notes](https://github.com/Xilinx/brevitas/releases/tag/v0.5.0). - *2021/03/15* - Release version 0.4.0, add support for \_\_torch_function\_\_ to QuantTensor. - *2021/03/04* - Release version 0.3.1, fix bug w/ act initialization from statistics w/ IGNORE_MISSING_KEYS=1. - *2021/03/01* - Release version 0.3.0, implements enum and shape solvers within extended dependency injectors. This allows declarative quantizers to be self-contained. - *2021/02/04* - Release version 0.2.1, includes various bugfixes of QuantTensor w/ zero-point. - *2021/01/30* - First release version 0.2.0 on PyPI.


نیازمندی

مقدار نام
==2.0.1 dependencies
- packaging
- setuptools
>=1.5.1 torch
>=3.7.4 typing-extensions
- pre-commit
- m2r2
- nbsphinx
- nbsphinx-link
- pydata-sphinx-theme
==5.3.0 sphinx
- sphinx-autodoc-typehints
==0.10.1 sphinx-gallery
- sphinxcontrib-napoleon
- sphinxemoji
- onnx
- onnxoptimizer
- bitstring
- onnx
- onnxoptimizer
- onnxruntime
- qonnx
- toposort
- scipy
- jupyter
- nbmake
- onnx
- onnxoptimizer
- onnxruntime
- inflect
- librosa
- numba
>=4.3.0 pillow
- requests
- ruamel.yaml
- soundfile
- sox
- torch-stft
- tqdm
- unidecode
- hypothesis
- mock
- psutil
- pytest
- pytest-mock
- pytest-xdist
- pytest-cases
- scipy
- torchvision
- librosa
- numpy
- pillow
- pyyaml
- scipy
- soundfile
- tqdm
- torchvision


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl brevitas-0.9.1:

    pip install brevitas-0.9.1.whl


نصب پکیج tar.gz brevitas-0.9.1:

    pip install brevitas-0.9.1.tar.gz