معرفی شرکت ها


brein-api-1.3.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Access to Breinify's DigitalDNA API
ویژگی مقدار
سیستم عامل -
نام فایل brein-api-1.3.0
نام brein-api
نسخه کتابخانه 1.3.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Breinify
ایمیل نویسنده toddbodnar@breinify.com
آدرس صفحه اصلی https://github.com/Breinify/brein-api-library-python
آدرس اینترنتی https://pypi.org/project/brein-api/
مجوز MIT
.. image:: https://raw.githubusercontent.com/Breinify/brein-api-library-python/master/documentation/img/logo250px.png :align: center :alt: Breinify API Python Library .. class:: center Breinify's DigitalDNA API puts dynamic behavior-based, people-driven data right at your fingertips. Step By Step Introductions ========================== What is Breinify's DigitialDNA ------------------------------ Breinify's DigitalDNA API puts dynamic behavior-based, people-driven data right at your fingertips. We believe that in many situations, a critical component of a great user experience is personalization. With all the data available on the web it should be easy to provide a unique experience to every visitor, and yet, sometimes you may find yourself wondering why it is so difficult. Thanks to **Breinify's DigitalDNA** you are now able to adapt your online presence to your visitors needs and **provide a unique experience**. Let's walk step-by-step through a simple example. Quick start =========== Step 1: Download the Library ---------------------------- Download the library from PyPi and install it with .. code:: bash pip3 install breinify-api or download the source from github and run .. code:: python python3 setup.py install Step 2: Integrate the library ----------------------------- Integrate the Library into your Python 3 project by importing the library in the relevant blocks of code. .. code:: python import breinify Step 3: Configure the library ----------------------------- In order to use the library you need a valid API-key, which you can get for free at https://www.breinify.com. In this example, we assume you have the following api-key: **772A-47D7-93A3-4EA9-9D73-85B9-479B-16C6** .. code:: python ##this is a valid API key apiKey = "938D-3120-64DD-413F-BB55-6573-90CE-473A" brein = Breinify(apiKey) The Breinify class is now configured with a valid configuration object. Step 4: Start using the library ------------------------------- Placing activity triggers ^^^^^^^^^^^^^^^^^^^^^^^^^ The engine powering the DigitalDNA API provides three endpoints. The first endpoint is used to inform the engine about the activities performed by visitors of your site. The activities are used to understand the user's current interest and infer the intent. It becomes more and more accurate across different users and verticals as more activities are collected. It should be noted, that any personal information is not stored within the engine, thus each individual's privacy is well protected. The engine understands several different activities performed by a user, e.g., landing, login, search, item selection, or logout. For this example, pretend that a user named "John Doe" is logged in to your site with his email address (john.doe@email.com) is viewing the page "www.example.com". You can log this by executing: .. code:: python from breinify import User #create a user you are interested in with their email and last name example_user = User(email="john.doe@email.com") brein.send_activity(example_user, "pageView", url="www.example.com") The call will then be run asynchronously in the background. Temporal Data Lookup ^^^^^^^^^^^^^^^^^^^^ Looking Up a User's Location's Info +++++++++++++++++++++++++++++++++++ You may want to customize the user's experience based on where they are. For example calling .. code:: python #create a user you are interested in based on their ip. Other fields (coordinates, time, etc) can also be included example_user = User(ip="143.127.128.10") result = brein.temporal_data(example_user) will result in a dictionary of timely information for the location the ip address resolves to (San Jose), for example: .. code:: python #wrap the result in json.dumps() for readability print(json.dumps(result,indent=4)) { "time": { "epochDayName": "Monday", "localYear": 2016, "epoch": 1477945062, "timezone": "America/Los_Angeles", "localDay": 31, "epochSecond": 42, "epochMinute": 17, "epochDay": 31, "localMonth": 10, "localMinute": 17, "localDayName": "Monday", "epochHour": 20, "epochMonth": 10, "epochYear": 2016, "localFormatIso8601": "2016-10-31T13:17:42-07:00", "localSecond": 42, "localHour": 13, "epochFormatIso8601": "2016-10-31T20:17:42+00:00" }, "holidays": [ { "source": "United Nations", "types": [ "SPECIAL_DAY" ], "holiday": "World Cities Day" }, { "source": "Public Information", "types": [ "HALLMARK" ], "holiday": "Halloween" } ], "weather": { "lastMeasured": 1477935065, "precipitation": { "precipitationType": "none", "precipitationAmount": 0.0 }, "windStrength": 1.4, "cloudCover": 48.0, "temperature": 13.161000000000001, "description": "scattered clouds", "measuredAt": { "lon": -121.767731, "lat": 37.23328 } }, "location": { "country": "US", "granularity": "city", "city": "San Jose", "lon": -121.827179, "lat": 37.366051, "state": "CA" } } Looking Up Information About a Location +++++++++++++++++++++++++++++++++++++++ Instead of looking up information based off a user's location, you can just supply the location's information directly. For example, you could get yesterday's weather in San Francisco by running: .. code:: python from breinify import Breinify import time import math apiKey = "938D-3120-64DD-413F-BB55-6573-90CE-473A" brein = Breinify(apiKey) yesterday = math.floor(time.time()) - 24*60*60 result = brein.temporal_data(location_free_text="San Francisco, CA", unixtime = yesterday) print("Yesterday in %s, the weather was %s with a temperature of %d F."%(result['location']['city'], result['weather']['description'], result['weather']['temperatureF'])) Which will print something similar to "Yesterday in San Francisco, the weather was overcast clouds with a temperature of 64 F." Further links ------------- To understand all the capabilities of Breinify's DigitalDNA API, take a look at: * `Breinify's Website`__. .. __: https://www.breinify.com


نحوه نصب


نصب پکیج whl brein-api-1.3.0:

    pip install brein-api-1.3.0.whl


نصب پکیج tar.gz brein-api-1.3.0:

    pip install brein-api-1.3.0.tar.gz