معرفی شرکت ها


bregmanet-1.0.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Bregman Neural Networks
ویژگی مقدار
سیستم عامل -
نام فایل bregmanet-1.0.0
نام bregmanet
نسخه کتابخانه 1.0.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Jordan Frecon
ایمیل نویسنده jordan.frecon@gmail.com
آدرس صفحه اصلی https://github.com/JordanFrecon/bregmanet
آدرس اینترنتی https://pypi.org/project/bregmanet/
مجوز MIT
# BregmaNet : Bregman Neural Networks ![license](https://img.shields.io/github/license/JordanFrecon/bregmanet) ![release](https://img.shields.io/github/v/release/JordanFrecon/bregmanet?include_prereleases) ![PyPI](https://img.shields.io/pypi/v/bregmanet) [BregmaNet](https://github.com/JordanFrecon/bregmanet) is a PyTorch library providing multiple [Bregman Neural Networks](https://jordan-frecon.com/download/2022_Frecon_J_p-icml_bnn.pdf). To date, implemented models cover Bregman variants of multi-layer perceptrons and various residual networks. **Contributor:** Jordan Frécon (INSA Rouen Normandy, France) ## Table of Contents 1. [Requirements and Installation](#Requirements-and-Installation) 2. [Getting Started](#Getting-Started) 3. [List of Supported Models](#List-of-Supported-Models) 4. [Citation](#Citation) 5. [Contribution and Acknowledgments](#Contribution-and-Acknowledgments) ## Requirements and Installation ### :clipboard: Requirements - PyTorch version >=1.7.1 - Python version >=3.6 - Torchvision version >=0.8.2 ### :hammer: Installation ``` pip install bregmanet ``` In development versions can be found [here](https://test.pypi.org/project/bregmanet/). ## Getting Started ### :warning: Precautions * All images should be scaled within the domain range of the activation function. * MLP models provided work only for 1-dimensional data inputs. * MLP models are designed without a softmax final layer. * All models need to be trained first. If you wish to provide your pretrained models, please [contribute](#Contribution-and-Acknowledgments). ### :rocket: Demos Multiple demo files can be found [there](https://github.com/JordanFrecon/bregmanet) in the *demos* folder. It contains: - *demo_toy_mlp.py*: training of MLP on the Two-spiral toy dataset. - *demo_mnist_mlp.py*: training of MLP on the MNIST dataset. - *demo_cifar10_resnet.py*: training of ResNet20 on the CIFAR-10 dataset. - *demo_cifar100_resnet.py*: training of ResNet20 on the CIFAR-100 dataset. - *demo_imagenet_resnet.py*: training of ResNet18 on the ImageNet dataset. ### :page_with_curl: Loading a Model To date, all Bregman neural models provided are not trained. If needed, a training procedure is made available [there](https://github.com/JordanFrecon/bregmanet/) in the *demos/utils* folder. In order to load a model, proceed as follows. <details><summary>Multi-Layer Perceptrons</summary><p> For a *sigmoid*-based MLP with - a linear input accepting 1d tensors of size 1024 - 3 hidden layers of size (1024, 1024, 512) - a linear output layer mapping to 1d tensors of size 10 ```python import bregmanet model = bregmanet.MLP(activation='sigmoid', num_neurons=[1024, 1024, 512], input_dim=1024, output_dim=10) ``` </p></details> <details><summary>ResNet</summary><p> For a BregmanResNet20 with SoftPlus activation function: ```python import bregmanet model = bregmanet.bresnet20(activation='softplus') ``` </p></details> ## List of Supported Models The following list reports all models currently supporting a Bregman variant. If you have any issue with one of them or wish to provide your own, please [contact us](mailto:jordan.frecon@gmail.com). - MLP - ResNet18 - ResNet20 - ResNet32 - ResNet34 - ResNet44 - ResNet56 - ResNet101 - Resnet110 - ResNet152 - Resnet1202 - ResNeXt50_32x4d - ResNeXt101_32x8d - WideResNet50_2 - WideResnet101_2 ## Citation If you use this package, please cite the following work: ``` @inproceedings{2022_Frecon_J_p-icml_bregmanet, title = {{Bregman Neural Networks}}, author = {Frecon, Jordan and Gasso, Gilles and Pontil, Massimiliano and Salzo, Saverio}, url = {https://hal.archives-ouvertes.fr/hal-03132512}, series = {Proceedings of Machine Learning Research}, booktitle = {Proceedings of the 39th International Conference on Machine Learning, {ICML} 2022, 17-23 July 2022, Baltimore, USA}, year = {2022}, } ``` ## Contribution and Acknowledgments Jordan Frecon would like to express his gratitude to the [Department of Computational Statistics and Machine Learning](https://www.iit.it/web/computational-statistics-and-machine-learning) (IIT, Genova, Italy) where part of this work was conducted during his postdoctoral position. The authors gratefully acknowledge the financial support of the French Agence Nationale de la Recherche (ANR), under grant ANR-20-CHIA-0021-01 ([project RAIMO](https://chaire-raimo.github.io)). The proposed BregmanResNets for CIFAR-10 are based on a rework of the ResNet implementation of [Yerlan Idelbayev](https://github.com/akamaster/pytorch_resnet_cifar10). Other ResNet models are devised by hinging upon the official PyTorch/TorchVision repository. For more information, please refer to: - ResNet: ["Deep Residual Learning for Image Recognition"](https://arxiv.org/pdf/1512.03385.pdf) - ResNeXt: ["Aggregated Residual Transformation for Deep Neural Networks"](https://arxiv.org/pdf/1611.05431.pdf) - WideResNet: ["Wide Residual Networks"](https://arxiv.org/pdf/1605.07146.pdf) All kind of contributions are welcome, do not hesitate to [contact us!](mailto:jordan.frecon@gmail.com)


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl bregmanet-1.0.0:

    pip install bregmanet-1.0.0.whl


نصب پکیج tar.gz bregmanet-1.0.0:

    pip install bregmanet-1.0.0.tar.gz