معرفی شرکت ها


breathpy-0.9.6


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Breath analysis in python
ویژگی مقدار
سیستم عامل -
نام فایل breathpy-0.9.6
نام breathpy
نسخه کتابخانه 0.9.6
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Philipp Weber
ایمیل نویسنده philmaweb@gmail.com
آدرس صفحه اصلی https://github.com/philmaweb/breathpy
آدرس اینترنتی https://pypi.org/project/breathpy/
مجوز GPLv3
[![DOI](https://zenodo.org/badge/267952107.svg)](https://zenodo.org/badge/latestdoi/267952107) # BreathPy ## A python library for breath gas biomarker profiling ## Installation `BreathPy` depends on `python >=3.6`, but does **not yet** support `python==3.9`, as several dependencies are not yet available for python 3.9. It is available through `pip`. Make sure to activate your local virtual environment or use anaconda. To render decision trees we depend on the `graphviz` executable. Either install into your current environment using `pip install breathpy` or create, activate a new anaconda environment "breath" and install `breathpy` and `graphviz`: ```bash conda create --name breath python=3.8 pip graphviz -y conda activate breath pip install breathpy ``` If you want to use the tutorial jupyter notebooks - you also need to install jupyter `conda install jupyter`. ## Usage MCC-IMS First prepare the example dataset by creating a subdirectory `data` and then linking the example files there. ```python from pathlib import Path from urllib.request import urlretrieve from zipfile import ZipFile # download example zip-archive url = 'https://github.com/philmaweb/BreathAnalysis.github.io/raw/master/data/small_candy_anon.zip' zip_dst = Path("data/small_candy_anon.zip") dst_dir = Path("data/small_candy_anon/") dst_dir.mkdir(parents=True, exist_ok=True) urlretrieve(url, zip_dst) # unzip archive into data subdirectory with ZipFile(zip_dst, "r") as archive_handle: archive_handle.extractall(Path(dst_dir)) ``` Then run the example analysis like so: ```python # import required functions from breathpy.model.BreathCore import construct_default_parameters, construct_default_processing_evaluation_steps from breathpy.model.CoreTest import run_start_to_end_pipeline # define file prefix and default parameters file_prefix = folder_name = 'small_candy_anon' # assuming the data directory is in the current directory plot_parameters, file_parameters = construct_default_parameters(file_prefix, folder_name, make_plots=True) # create default parameters for preprocessing and evaluation preprocessing_steps, evaluation_params_dict = construct_default_processing_evaluation_steps() # call start run_start_to_end_pipeline(plot_parameters, file_parameters, preprocessing_steps, evaluation_params_dict) ``` For more complete examples see `https://github.com/philmaweb/breathpy/blob/master/breathpy/tutorial/binary_candy.ipynb`, `https://github.com/philmaweb/breathpy/blob/master/breathpy/tutorial/multiclass_mouthwash.ipynb' or 'CoreTest.run_start_to_end_pipeline` and `CoreTest.run_resume_analysis`. Example data is available at https://github.com/philmaweb/BreathAnalysis.github.io/tree/master/data. ## Usage GC-MS ### Now with experimental support for GC/MS + LC/MS data through pyOpenMS Download and extract the example datasets into the current data subdirectory: ```python # handle imports from urllib.request import urlretrieve from pathlib import Path from zipfile import ZipFile # download and extract data into data/algae directory url = 'https://github.com/philmaweb/BreathAnalysis.github.io/raw/master/data/algae.zip' zip_dst = Path("data/algae.zip") dst_dir = Path("data/algae/") dst_dir.mkdir(parents=True, exist_ok=True) urlretrieve(url, zip_dst) # unzip archive into data subdirectory with ZipFile(zip_dst, "r") as archive_handle: archive_handle.extractall(Path(dst_dir)) ``` ```python import os from pathlib import Path from breathpy.model.BreathCore import construct_default_parameters,construct_default_processing_evaluation_steps from breathpy.model.ProcessingMethods import GCMSPeakDetectionMethod, PerformanceMeasure from breathpy.model.GCMSTest import run_gcms_platform_multicore from breathpy.generate_sample_data import generate_train_test_set_helper """ Runs analysis of the algae sample set (Sun M, Yang Z and Wawrik B (2018) Metabolomic Fingerprints of Individual Algal Cells Using the Single-Probe Mass Spectrometry Technique. Front. Plant Sci. 9:571. doi: 10.3389/fpls.2018.00571) 19 samples from four conditions - light, dark, nitrogen-limited and replete (post nitrogen-limited) Samples originated from single-probe mass spectrometry files - we import created featureXML files. :param cross_val_num: :return: """ cross_val_num=3 # or use your local path to a dataset here source_dir = Path("data/algae") target_dir = Path("data") # will delete previous split and rewrite data train_df, test_df = generate_train_test_set_helper(source_dir, target_dir, cross_val_num=cross_val_num) train_dir = Path(target_dir)/"train_algae" # prepare analysis set_name = "train_algae" make_plots = True # generate parameters plot_parameters, file_parameters = construct_default_parameters(set_name, set_name, make_plots=make_plots) preprocessing_params_dict = {GCMSPeakDetectionMethod.ISOTOPEWAVELET: {"hr_data": True}} _, evaluation_params_dict = construct_default_processing_evaluation_steps(cross_val_num) # running the full analysis takes less than 30 minutes of computation time using 6 cores - in this example most if not all computations are single core though run_gcms_platform_multicore( sample_dir=train_dir, preprocessing_params=preprocessing_params_dict, evaluation_parms=evaluation_params_dict, num_cores=6) ``` Also see `model/GCMSTest.py` for reference. ### License `BreathPy` is licensed under GPLv3, but contains binaries for PEAX, which is a free software for academic use only. See > [A modular computational framework for automated peak extraction from ion mobility spectra, 2014, D’Addario *et. al*](https://doi.org/10.1186/1471-2105-15-25) ## Contact If you run into difficulties using `BreathPy`, please open an issue at our [GitHub](https://github.com/philmaweb/BreathPy) repository. Alternatively you can write an email to [Philipp Weber](mailto:pweber@imada.sdu.dk?subject=[BreathPy]%20BreathPy).


نیازمندی

مقدار نام
>=0.13.2 graphviz
- ipdb
>=3.2.1 matplotlib
>=0.11.5 matplotlib-venn
>=1.18.1 numpy
>=1.0.3 pandas
>=3.4.2 psutil
==2.5.0 pyopenms
>=1.1.1 pywavelets
>=0.16.2 scikit-image
<0.24.0,>=0.22.0 scikit-learn
>=1.4.1 scipy
>=0.10.0 seaborn
>=0.2.3 statannot
>=0.11.1 statsmodels
>=1.2.0 xlrd


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl breathpy-0.9.6:

    pip install breathpy-0.9.6.whl


نصب پکیج tar.gz breathpy-0.9.6:

    pip install breathpy-0.9.6.tar.gz