معرفی شرکت ها


brax-0.9.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A differentiable physics engine written in JAX.
ویژگی مقدار
سیستم عامل -
نام فایل brax-0.9.0
نام brax
نسخه کتابخانه 0.9.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Brax Authors
ایمیل نویسنده no-reply@google.com
آدرس صفحه اصلی http://github.com/google/brax
آدرس اینترنتی https://pypi.org/project/brax/
مجوز Apache 2.0
<img src="https://github.com/google/brax/raw/main/docs/img/brax_logo.gif" width="336" height="80" alt="BRAX"/> Brax is a fast and fully differentiable physics engine used for research and development of robotics, human perception, materials science, reinforcement learning, and other simulation-heavy applications. Brax is written in [JAX](https://github.com/google/jax) and is designed for use on acceleration hardware. It is both efficient for single-device simulation, and scalable to massively parallel simulation on multiple devices, without the need for pesky datacenters. <img src="https://github.com/google/brax/raw/main/docs/img/humanoid_v2.gif" width="160" height="160"/><img src="https://github.com/google/brax/raw/main/docs/img/a1.gif" width="160" height="160"/><img src="https://github.com/google/brax/raw/main/docs/img/ant_v2.gif" width="160" height="160"/><img src="https://github.com/google/brax/raw/main/docs/img/ur5e.gif" width="160" height="160"/> Brax simulates environments at millions of physics steps per second on TPU, and includes a suite of learning algorithms that train agents in seconds to minutes: * Baseline learning algorithms such as [PPO](https://github.com/google/brax/blob/main/brax/training/agents/ppo), [SAC](https://github.com/google/brax/blob/main/brax/training/agents/sac), [ARS](https://github.com/google/brax/blob/main/brax/training/agents/ars), and [evolutionary strategies](https://github.com/google/brax/blob/main/brax/training/agents/es). * Learning algorithms that leverage the differentiability of the simulator, such as [analytic policy gradients](https://github.com/google/brax/blob/main/brax/training/agents/apg). ## One API, Three Pipelines Brax offers three distinct physics pipelines that are easy to swap: * [Generalized](https://github.com/google/brax/blob/main/brax/v2/generalized/) calculates motion in [generalized coordinates](https://en.wikipedia.org/wiki/Generalized_coordinates) using the same accurate robot dynamics algorithms as [MuJoCo](https://mujoco.org/) and [TDS](https://github.com/erwincoumans/tiny-differentiable-simulator). * [Positional](https://github.com/google/brax/blob/main/brax/v2/positional/) uses [Position Based Dynamics](https://matthias-research.github.io/pages/publications/posBasedDyn.pdf), a fast but stable method of resolving joint and collision constraints. * [Spring](https://github.com/google/brax/blob/main/brax/v2/spring/) provides fast and cheap simulation for rapid experimentation, using simple impulse-based methods often found in video games. These pipelines share the same API and can run side-by-side within the same simulation. This makes Brax well suited for experiments in transfer learning and closing the gap between simulation and the real world. ## Quickstart: Colab in the Cloud Explore Brax easily and quickly through a series of colab notebooks: * [Brax Basics](https://colab.research.google.com/github/google/brax/blob/main/notebooks/basics.ipynb) introduces the Brax API, and shows how to simulate basic physics primitives. * [Brax Training](https://colab.research.google.com/github/google/brax/blob/main/notebooks/training.ipynb) introduces the Brax v2 API, and shows how to train a policy with the generalized backend. ## Using Brax Locally To install Brax from pypi, install it with: ``` python3 -m venv env source env/bin/activate pip install --upgrade pip pip install brax ``` You may also install from [Conda](https://docs.conda.io/en/latest/) or [Mamba](https://github.com/mamba-org/mamba): ``` conda install -c conda-forge brax # s/conda/mamba for mamba ``` Alternatively, to install Brax from source, clone this repo, `cd` to it, and then: ``` python3 -m venv env source env/bin/activate pip install --upgrade pip pip install -e . ``` To train a model: ``` learn ``` Training on NVidia GPU is supported, but you must first install [CUDA, CuDNN, and JAX with GPU support](https://github.com/google/jax#installation). ## Learn More For a deep dive into Brax's design and performance characteristics, please see our paper, [Brax -- A Differentiable Physics Engine for Large Scale Rigid Body Simulation ](https://arxiv.org/abs/2106.13281), which appeared in the [Datasets and Benchmarks Track](https://neurips.cc/Conferences/2021/CallForDatasetsBenchmarks) at [NeurIPS 2021](https://nips.cc/Conferences/2021). ## Citing Brax If you would like to reference Brax in a publication, please use: ``` @software{brax2021github, author = {C. Daniel Freeman and Erik Frey and Anton Raichuk and Sertan Girgin and Igor Mordatch and Olivier Bachem}, title = {Brax - A Differentiable Physics Engine for Large Scale Rigid Body Simulation}, url = {http://github.com/google/brax}, version = {0.9.0}, year = {2021}, } ``` ## Acknowledgements Brax has come a long way since its original publication. We offer gratitude and effusive praise to the following people: * Manu Orsini and Nikola Momchev who provided a major refactor of Brax's training algorithms to make them more accessible and reusable. * Erwin Coumans who has graciously offered advice and mentorship, and many useful references from [Tiny Differentiable Simulator](https://github.com/erwincoumans/tiny-differentiable-simulator). * Baruch Tabanpour, a colleague who helped launch brax v2 and overhauled the contact library. * [Shixiang Shane Gu](https://sites.google.com/corp/view/gugurus) and [Hiroki Furuta](https://frt03.github.io/), who contributed BIG-Gym and Braxlines, and a scene composer to Brax. * Our awesome [open source collaborators and contributors](https://github.com/google/brax/graphs/contributors). Thank you!


نیازمندی

مقدار نام
- absl-py
- dm-env
- etils
- flask
- flask-cors
- flax
- grpcio
- gym
>=0.4.6 jax
>=0.4.6 jaxlib
- jaxopt
- jinja2
- mujoco
- numpy
- optax
- Pillow
- pytinyrenderer
- scipy
- tensorboardX
==3.9.35 trimesh
- typing-extensions
- dataclasses
- pytest
- transforms3d


نحوه نصب


نصب پکیج whl brax-0.9.0:

    pip install brax-0.9.0.whl


نصب پکیج tar.gz brax-0.9.0:

    pip install brax-0.9.0.tar.gz