معرفی شرکت ها


brav0-0.2.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Bayesian Radial Velcoity Zero-Point Correction
ویژگی مقدار
سیستم عامل -
نام فایل brav0-0.2.0
نام brav0
نسخه کتابخانه 0.2.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Thomas Vandal
ایمیل نویسنده thomasvandal@hotmail.com
آدرس صفحه اصلی https://github.com/vandalt/brav0
آدرس اینترنتی https://pypi.org/project/brav0/
مجوز MIT License
# brav0 _brav0_ (**B**ayesian **Ra**dial **V**elocity **0**-point correction) is a tool to correct zero-point variations in radial velocity (RV) timeseries. This means _brav0_ takes several datasets (usually from the same instrument) and models variations that are common to all datasets. ## Installation _brav0_ can be installed with pip: `python -m pip install brav0`. To use the development version of _brav0_, clone the repository and install it: ```shell git clone https://github.com/vandalt/brav0.git cd brav0 python -m pip install -U -e ".[dev]" ``` _Note: In both cases, as of release 0.1, the development pace will probably be relatively fast for a while so users should update often, either by pulling from the upstream Github repository or by upgrading with `python -m pip install -U brav0`. ## Using _brav0_ _brav0_ is accessible as a command line script or as a Python library. The script requires a configuration file. There are example config files as well as a notebook using the API in the `examples` directory. ### brav0 CLI The CLI is the main way to use _brav0_. It does not (yet) provide an command to run everything at once. The main ZP correction steps are instead separated in various commands. First, we run `source` to load all the input individual data and merge it in a single pandas dataframe. ``` brav0 source config.yml ``` This produces a `raw.csv` file in the output directory, indexed by original file name. Then, we can preprocess the data by doing a series cleanups and by re-formatting the dataframe (e.g. index with object names). ``` brav0 preprocess config.yml ``` This produces the `processed.csv` file the `raw_plots` directory with timeseries and periodogram plots before PP, and the `pp_plots` directory with plots after PP. Once the data is ready, we can remove known planets. Currently, the only way to do this in `brav0` is to use the [NASA explanet archive](https://exoplanetarchive.ipac.caltech.edu/) to remove known planets. It performs Monte-Carlo error propagation and removes "non-controversial" planets only (as defined by the archive). ``` brav0 remove-planets config.yml ``` The resulting dataset is stored in `no_planets.csv` with corresponding plots in `no_planet`. After removing known planets, we can fit the Zero-point model joinlty to all data. The config file specifies if we do MCMC, MAP optimization, or just use a fixed model (recommended only when all parameters have deterministic values). Here is an example where we fit a GP with a Matern 3/2 kernel: ``` brav0 model config.yml Matern32 ``` This produces the model curve and the optimization or sampling results in a directory with the model name (or other subdirectory when using the `-o` option). Finally, we can generate summary information and plots about a given ZP model: ``` brav0 summary config.yml /path/to/model/dir ``` This will save plots in the model directory. ## Why brav0 ? Fitting RV zero-points can be done with relatively simple tools. _brav0_ was originally written to explore the use of Gaussian processes to model RV zero-points. When fitting a GP along with parameters for each standard (calibration) star, the number of parameter can be high, such that sampling the posterior distribution efficiently is challenging. _brav0_ uses PyMC3 to perform gradient-based inference (other backends are not excluded, contributions are welcome!). By using `exoplanet` and `celerite2`, _brav0_ enables efficient inference to derive a zero-point correction error estimates.


نیازمندی

مقدار نام
- numpy
- scipy
- pandas
- astropy
- matplotlib
- requests
- radvel
- astroquery
- h5py
- pymc3
- arviz
- xarray
- pymc3-ext
- aesara-theano-fallback
- exoplanet
- celerite2
- python-box
- orbits
- tqdm
- ipython
- jupytext
- black
- isort
- flake8
- ipdb
- pytest


نحوه نصب


نصب پکیج whl brav0-0.2.0:

    pip install brav0-0.2.0.whl


نصب پکیج tar.gz brav0-0.2.0:

    pip install brav0-0.2.0.tar.gz