معرفی شرکت ها


bpnsdata-0.1.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Add Belgian Part of the North Sea (BPNS) marine environmental data to a geodataframe
ویژگی مقدار
سیستم عامل -
نام فایل bpnsdata-0.1.9
نام bpnsdata
نسخه کتابخانه 0.1.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Clea Parcerisas
ایمیل نویسنده clea.parcerisas@vliz.be
آدرس صفحه اصلی https://github.com/lifewatch/bpnsdata.git
آدرس اینترنتی https://pypi.org/project/bpnsdata/
مجوز -
# BPNSdata bpnsdata is a package to add environmental data to a geopandas DataFrame. There is no support for multiindex columns, so one level has to be selected or dropped out before using it. Right now only Belgian Part of the North Sea data is available for all the classes. However, some classes are not restricted to the bpns and can be used to add environmental data to other parts of the world. ## Install Use the package manager [pip](https://pip.pypa.io/en/stable/) to install the dependencies. ```bash pip install -r requirements.txt ``` If you are working on Windows, it can be tricky to install geopandas. We recommend to install FIRST the following packages (in this order) by downloading the wheels of: * GDAL * rasterio * Fiona You can follow this tutorial if you're not familiar with wheels and/or pip: https://geoffboeing.com/2014/09/using-geopandas-windows/ Build the project ```bash python setup.py install ``` ## Environmental data Environmental data can be added by specifying it in the env_vars variable when calling the main class SeaDataManager. To do so, it is necessary to have gps information, which can be stored in a .gpx file, in the "waypoints" or "track_points" layer. It can also be loaded as a csv or a shp file. Then the algorithm finds the point which is closest in time for row of the dataframe. The available data sources are: * csv: Static geo data in a csv file. Files to be provided by the user * time: Information about the moment of the day and the moon * moon cycle * day moment * emodnet: wcs data from EMODnet * shipping density * bathymetry * raster: raster data (tiff images) * seabed habitats * habitat suitability * griddap: RBINS data from the erddap server * sea surface * wave information * wrakken_bank: shipwreck information * meetnet_vlaamse_banken: read weather data from the buoys of the meetnet vlaamse banken For easier running of the classes, there is a main class called SeaDataManager, which allows to run all the desired environmental variables in one line of code. ### EMODnet Entry point to download map data from EMODnet using WCS. Coverage to be checked in EMODnet, but larger than BPNS. The implemented classes so far are: ##### Shipping Shipping activity from https://www.emodnet-humanactivities.eu/ Adds the route density or the shipping intensity from the month of the deployment to the dataset, considering the location, the year and the month. It adds the columns: * route_density * ship_density (depending on the layer type selected) ##### Bathymetry Adds the mean bathymetry (https://www.emodnet-bathymetry.eu/) layer considering location (no time considered) The output column is: * bathymetry ### Raster Data Raster Data represents geographical data. Only BPNS available The two outputs are: ##### Seabed habitats Adds the sea habitat (https://www.emodnet-seabedhabitats.eu/). The output columns are: * seabed_habitat * substrate ##### Benthic habitats Habitat suitability map from the publication ([1]V. Van Lancker, G. Moerkerke, I. Du Four, E. Verfaillie, M. Rabaut, and S. Degraer, “Fine-scale Geomorphological Mapping of Sandbank Environments for the Prediction of Macrobenthic Occurences, Belgian Part of the North Sea,” Seafloor Geomorphology as Benthic Habitat, pp. 251–260, 2012, doi: 10.1016/B978-0-12-385140-6.00014-1.). The closest point from the maps is added to the each point of the dataset. The output column is: * benthic_habitat ### ERDDAP RBINS Data Sea State Data from RBINS (https://erddap.naturalsciences.be/erddap/index.html). Coverage to be checked in the RBINS erddap website, but restricted to North Sea. In this version only the tables BCZ_HydroState_V1 and WAM_ECMWF are implemented. ##### Sea Surface The data is added from the table: BCZ_HydroState_V1. * surface_baroclinic_eastward_sea_water_velocity * surface_baroclinic_northward_sea_water_velocity * sea_surface_height_above_sea_level * sea_surface_salinity * sea_surface_temperature * surface_baroclinic_sea_water_velocity ##### Wave Data The data is added from the table: WAM_ECMWF Output columns: * hs: wave height in cm * tm_1: wave period ### Time Data Data Related to time series. It adds the time of the day (day, night, twilight dawn...) and the moon phase. The calculation is done using skyfield (https://rhodesmill.org/skyfield/). Coverage in all the world. The output columns are: * moment_day (twilight, dawn, day, night) * moon_phase (in radians) ### Csv Data Static data that is stored in a csv, with a lat and a lon columns (names to be given). It returns the closest point of all the csv, the distance to it, the coordinates and also other columns selected by the user with the specified suffix. ### Wrakken Bank Will add information about the closest shipwreck. The data is extracted from https://wrakkendatabank.afdelingkust.be/. Following information will be added: * shipwreck_distance: Distance to closest shipwreck * shipwreck_lat * shipwreck_lon * shipwreck_name ### Meetnet Vlaamse Banken Read the available speed at the closest buoy from https://api.meetnetvlaamsebanken.be/V2-help/. Attention! To be able to use this feature you need to have a user registered at Meet Net Vlaamse Banken. You can do it for free from their webpage. Then you need the username and the password. You can pass it directly to the created objects, but if you want to use them in the SeaDataManager you will have to add the username and the password as environmental variables (username_bank and password_bank). So far, rainfall (NSI) and average wind speed at 10 m (WVC) are implemented. It adds to the DataFrame a column with the value of the data, the id of the specified buoy and the distance to the buoy. The id of the buoy is represented by the sum of the location id + the data id. i.e., in the buoy OMP, the id for precipitation is OMP+NSI=OMPNSI ## Usage Possible ways of loading the data ```python import bpnsdata import pandas as pd import numpy as np # When the desired df is already on a gpx or a csv with coordinates (in this case, imagine the gpx itself # contains the rows to analyze geofile = 'data/VG.gpx' geodf = bpnsdata.SurveyLocation(geofile).geotrackpoints # Could also be done directly using geopandas: geodf = geopandas.read_file(geofile) gedf = geodf.set_index(pd.to_datetime(geodf['time'])) # Could be that we have a df (here a random one) and we want to add a geolocation to it # Create a random dataframe to work with time_index = pd.date_range(start='2020-10-12 11:35', end='2020-10-12 12:00', freq='m', tz='UTC') random_data = np.random.randint(5, 30, size=10) df = pd.DataFrame(random_data, index=time_index) ``` Use of the SeaDataManager ```python import bpnsdata # Define the seadatamanager env_vars = ['shipping', 'time', 'wrakken_bank', 'habitat_suitability', 'bathymetry' 'seabed_habitat', 'sea_surface', 'sea_wave', 'rain', 'wind'] manager = bpnsdata.SeaDataManager(env_vars) # If the data is without geometry, then: geodf = manager.add_geodata(df, gpx_file) # Once the data has geometry: df_env = manager(geodf) ``` Use without the SeaDataManager** ```python import bpnsdata # For example, for shipping: shipping = bpnsdata.ShippingData(layer_name='rd', boat_type='All') df_env = shipping(geodf) ```


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl bpnsdata-0.1.9:

    pip install bpnsdata-0.1.9.whl


نصب پکیج tar.gz bpnsdata-0.1.9:

    pip install bpnsdata-0.1.9.tar.gz