معرفی شرکت ها


bpmodels-0.2.3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

BrainPy-Models: An example package accompany with BrainPy.
ویژگی مقدار
سیستم عامل -
نام فایل bpmodels-0.2.3
نام bpmodels
نسخه کتابخانه 0.2.3
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Pku-Nip-Lab
ایمیل نویسنده adaduo@outlook.com
آدرس صفحه اصلی https://github.com/PKU-NIP-Lab/BrainPy-Models
آدرس اینترنتی https://pypi.org/project/bpmodels/
مجوز -
# BrainPy-Models [![LICENSE](https://anaconda.org/brainpy/brainpy/badges/license.svg)](https://github.com/PKU-NIP-Lab/BrainPy-Models) [![Documentation](https://readthedocs.org/projects/brainpy/badge/?version=latest)](https://brainpy-models.readthedocs.io/en/latest/) [![Conda](https://anaconda.org/brainpy/bpmodels/badges/version.svg)](https://anaconda.org/brainpy/bpmodels) **Note**: *We welcome your contributions for model implementations.* `BrainPy-Models` is a repository accompany with [BrainPy](https://github.com/PKU-NIP-Lab/BrainPy), which is a framework for spiking neural network simulation. With BrainPy, we implements the most canonical and effective neuron models and synapse models, and show them in `BrainPy-Models`. Here, users can directly import our models into your network, and also can learn examples of how to use BrainPy from [Documentations](https://brainpy-models.readthedocs.io/en/latest/). We provide the following models: | Neuron models | Synapse models | Learning rules | Networks | | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ | | [Leaky integrate-and-fire model](https://brainpy-models.readthedocs.io/en/latest/apis/_autosummary/bpmodels.neurons.get_LIF.html) | [Alpha Synapse](https://brainpy-models.readthedocs.io/en/latest/apis/_autosummary/bpmodels.synapses.get_alpha.html) | [STDP](https://brainpy-models.readthedocs.io/en/latest/apis/_autosummary/bpmodels.learning_rules.get_STDP1.html) | [Continuous attractor network](https://brainpy-models.readthedocs.io/en/latest/examples/networks/CANN.html) | | [Hodgkin-Huxley model](https://brainpy-models.readthedocs.io/en/latest/apis/_autosummary/bpmodels.neurons.get_HH.html) | [AMPA](https://brainpy-models.readthedocs.io/en/latest/apis/_autosummary/bpmodels.synapses.get_AMPA1.html) / [NMDA](https://brainpy-models.readthedocs.io/en/latest/apis/_autosummary/bpmodels.synapses.get_NMDA.html) | [BCM rule](https://brainpy-models.readthedocs.io/en/latest/apis/_autosummary/bpmodels.learning_rules.get_BCM.html) | [E/I balance network](https://brainpy-models.readthedocs.io/en/latest/examples/networks/EI_balanced_network.html) | | [Izhikevich model](https://brainpy-models.readthedocs.io/en/latest/apis/_autosummary/bpmodels.neurons.get_Izhikevich.html) | [GABA_A](https://brainpy-models.readthedocs.io/en/latest/apis/_autosummary/bpmodels.synapses.get_GABAa1.html) / [GABA_B](https://brainpy-models.readthedocs.io/en/latest/apis/_autosummary/bpmodels.synapses.get_GABAb1.html) | [Oja\'s rule](https://brainpy-models.readthedocs.io/en/latest/apis/_autosummary/bpmodels.learning_rules.get_Oja.html) | [gamma oscillations](https://brainpy-models.readthedocs.io/en/latest/examples/networks/Gamma_oscillations.html) | | [Morris--Lecar model](https://brainpy-models.readthedocs.io/en/latest/apis/_autosummary/bpmodels.neurons.get_MorrisLecar.html) | [Exponential Decay Synapse](https://brainpy-models.readthedocs.io/en/latest/apis/_autosummary/bpmodels.synapses.get_exponential.html) | | | | [Generalized integrate-and-fire](https://brainpy-models.readthedocs.io/en/latest/apis/_autosummary/bpmodels.neurons.get_GeneralizedIF.html) | [Difference of Two Exponentials](https://brainpy-models.readthedocs.io/en/latest/apis/_autosummary/bpmodels.synapses.get_two_exponentials.html) | | | | [Exponential integrate-and-fire](https://brainpy-models.readthedocs.io/en/latest/apis/_autosummary/bpmodels.neurons.get_ExpIF.html) | [Short-term plasticity](https://brainpy-models.readthedocs.io/en/latest/apis/_autosummary/bpmodels.synapses.get_STP.html) | | | | [Quadratic integrate-and-fire](https://brainpy-models.readthedocs.io/en/latest/apis/_autosummary/bpmodels.neurons.get_QuaIF.html) | [Gap junction](https://brainpy-models.readthedocs.io/en/latest/apis/_autosummary/bpmodels.synapses.get_gap_junction.html) | | | | [adaptive Exponential IF](https://brainpy-models.readthedocs.io/en/latest/apis/_autosummary/bpmodels.neurons.get_AdExIF.html) | [Voltage jump](https://brainpy-models.readthedocs.io/en/latest/apis/_autosummary/bpmodels.synapses.get_voltage_jump.html) | | | | [adaptive Quadratic IF](https://brainpy-models.readthedocs.io/en/latest/apis/_autosummary/bpmodels.neurons.get_AdQuaIF.html) | | | | | [Hindmarsh--Rose model](https://brainpy-models.readthedocs.io/en/latest/apis/_autosummary/bpmodels.neurons.get_HindmarshRose.html) | | | | | [Wilson-Cowan model](https://brainpy-models.readthedocs.io/en/latest/apis/_autosummary/bpmodels.neurons.get_WilsonCowan.html) | | | | ## Installation Install from source code: python setup.py install Install ``BrainPy-Models`` using ``conda``: conda install bpmodels -c brainpy Install `BrainPy-Models` using `pip`: pip install bpmodels The following packages need to be installed to use `BrainPy-Models`: - Python >= 3.7 - Matplotlib >= 2.0 - brainpy-simulator >= 0.3.0 ## Quick Start The use of `bpmodels` is very convenient, let\'s take an example of the implementation of the E-I balanced network. We start by importing the `brainpy` and `bpmodels` packages and set profile. ```python import brainpy as bp import bpmodels import numpy as np import matplotlib.pyplot as plt # set profile bp.profile.set(jit=True, device='cpu', numerical_method='exponential') ``` The E-I balanced network is based on leaky Integrate-and-Fire (LIF) neurons connecting with single exponential decay synapses. As showed in the table above, `bpmodels` provides pre-defined LIF neuron model and exponential synapse model, so we can use [`bpmodels.neurons.get_LIF`](https://brainpy-models.readthedocs.io/en/latest/apis/_autosummary/bpmodels.neurons.get_LIF.html#bpmodels.neurons.get_LIF) and [`bpmodels.synapses.get_exponential`](https://brainpy-models.readthedocs.io/en/latest/apis/_autosummary/bpmodels.synapses.get_exponential.html) to get the pre-defined models. ```python V_rest = -52. V_reset = -60. V_th = -50. neu = bpmodels.neurons.get_LIF(V_rest=V_rest, V_reset = V_reset, V_th=V_th, noise=0., mode='scalar') syn = bpmodels.synapses.get_exponential(tau_decay = 2., mode='scalar') ``` ```python # build network num_exc = 500 num_inh = 500 prob = 0.1 JE = 1 / np.sqrt(prob * num_exc) JI = 1 / np.sqrt(prob * num_inh) group = bp.NeuGroup(neu, geometry=num_exc + num_inh, monitors=['spike']) group.ST['V'] = np.random.random(num_exc + num_inh) * (V_th - V_rest) + V_rest exc_conn = bp.SynConn(syn, pre_group=group[:num_exc], post_group=group, conn=bp.connect.FixedProb(prob=prob)) exc_conn.ST['w'] = JE inh_conn = bp.SynConn(syn, pre_group=group[num_exc:], post_group=group, conn=bp.connect.FixedProb(prob=prob)) exc_conn.ST['w'] = -JI net = bp.Network(group, exc_conn, inh_conn) net.run(duration=500., inputs=(group, 'ST.input', 3.)) # visualization fig, gs = bp.visualize.get_figure(4, 1, 2, 10) fig.add_subplot(gs[:3, 0]) bp.visualize.raster_plot(net.ts, group.mon.spike, xlim=(50, 450)) fig.add_subplot(gs[3, 0]) rates = bp.measure.firing_rate(group.mon.spike, 5.) plt.plot(net.ts, rates) plt.xlim(50, 450) plt.show() ``` Then you would expect to see the following output: ![image](docs/images/EI_balanced.png)


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl bpmodels-0.2.3:

    pip install bpmodels-0.2.3.whl


نصب پکیج tar.gz bpmodels-0.2.3:

    pip install bpmodels-0.2.3.tar.gz