معرفی شرکت ها


bph2-co2-1.0.4


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Educational tool for co2_concentration simulations
ویژگی مقدار
سیستم عامل -
نام فایل bph2-co2-1.0.4
نام bph2-co2
نسخه کتابخانه 1.0.4
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Max Buehler
ایمیل نویسنده -
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/bph2-co2/
مجوز MIT
============================================================ bph2_co2: Educational tool for CO2 concentration simulations ============================================================ Python library for education with tools for CO2 concentration simulations .. image:: https://raw.githubusercontent.com/bph-tuwien/bph_co2/master/docs/screenshot_1.PNG?sanitize=true Installation: ^^^^^^^^^^^^^ pip install bph2-co2==1.0.0 Example: -------- see also main.py .. code-block:: python from bph_co2.solver import CO2_Simulation, ppm_to_mg_m3, mg_m3_to_ppm from bph_co2.timeseries import Timeseries from bph_co2.window import Window try: import importlib.resources as pkg_resources except ImportError: # Try backported to PY<37 `importlib_resources`. import importlib_resources as pkg_resources from bph_co2.resources import Input_Data as case_data if __name__ == '__main__': # load .csv files with pkg_resources.path(case_data, 'persons.csv') as path: persons_filename = path.__str__() with pkg_resources.path(case_data, 'internal_co2_source.csv') as path: internal_co2_source_filename = path.__str__() with pkg_resources.path(case_data, 'air_change_rate.csv') as path: air_change_rate_filename = path.__str__() with pkg_resources.path(case_data, 'window_state.csv') as path: window_state_filename = path.__str__() with pkg_resources.path(case_data, 'indoor_temperature.csv') as path: indoor_temperature_filename = path.__str__() with pkg_resources.path(case_data, 'outdoor_temperature.csv') as path: outdoor_temperature_filename = path.__str__() n_persons = Timeseries.from_csv(persons_filename, interpolation_scheme='previous') internal_co2_source = Timeseries.from_csv(internal_co2_source_filename, interpolation_scheme='linear') air_change_rate = Timeseries.from_csv(air_change_rate_filename, interpolation_scheme='linear') window_state = Timeseries.from_csv(window_state_filename, interpolation_scheme='previous') indoor_temperature = Timeseries.from_csv(indoor_temperature_filename, interpolation_scheme='linear') outdoor_temperature = Timeseries.from_csv(outdoor_temperature_filename, interpolation_scheme='linear') # create a window: window = Window(hight=1, area=1, state=window_state) sim = CO2_Simulation(name='test_simulation', volume=51.48, n_persons=n_persons, emission_rate=27000, internal_co2_source=internal_co2_source, indoor_temperature=indoor_temperature, outdoor_temperature=outdoor_temperature, windows=[window], air_change_rate=air_change_rate, timestep=60, t_end=26640) res = sim.calculate() res.plot() Usage ----- Imports: ^^^^^^^^ .. code-block:: python from src.bph_co2.solver import CO2_Simulation from src.bph_co2.timeseries import Timeseries from src.bph_co2.window import Window CO2_Simulation: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ - create a CO2_Simulation object. This is the base for running a simulation: .. code-block:: python sim = CO2_Simulation(name='my_test_simulation') The CO2_Simulation has the following parameters: - *name*: the name of the CO2_Simulation; default is 'Unnamed Simulation' - *volume*: the volume of the simulated zone [m³]; default is 75 - *n_persons*: number of persons in the zone; default is 1 * - *emission_rate*: CO2 emission_rate of a person in mg/h; default is 27000 mg/h; - *internal_co2_source*: co2 emission rate of internal sources in mg/h; default is 0 * - *outdoor_temperature*: outdoor temperature in °C; default is 10 °C * - *indoor_temperature*: indoor temperature in °C; default is 20 °C * - *windows*: windows of the zone; list of *window*-objects; default is [] - *air_change_rate*: air change rate in 1/h; default is 0.5 * - *c0i*: initial CO2-concentration in the room/zone in ppm; default is 400 - *c0e*: initial outdoor CO2-concentration in ppm; default is 400 - *timestep*: simulation timestep [s]; default is 360 - *t_end*: end time of the simulation All parameters can be set on initialization or afterwards. * Parameters can be Timeseries objects - run a simulation: .. code-block:: python res = sim.calculate() - display simulation results: res.plot() Timeseries Objects: ^^^^^^^^^^^^^^^^^^^^^^^^^^ - A Timeseries handles data and returns a value / values for a time [s]. A Timeseries can handle static values (int, float, etc..), numpy arrays (first column has to be the time in [s]) or pd.Dataframes (index must be the time). - Timeseries objects can interpolate Data in different ways. To specify interpolation scheme pass keyword *interpolation_scheme* with: - 'linear': linear interpolation - 'previous': closest previous value (for example for persons) - Create a timeseries object with static value (integer): .. code-block:: python n_persons = Timeseries(data=1) - Create a timeseries object with np.array: .. code-block:: python array = array = np.empty((2,100)) array[0,:] = np.arange(array.shape[1]) array[1,:] = np.random.rand(array.shape[1]) n_persons = Timeseries(data=array) - Create a timeseries object with pd.Dataframe: .. code-block:: python array = array = np.empty((2,100)) array[0,:] = np.arange(array.shape[1]) array[1,:] = np.random.rand(array.shape[1]) df = pd.DataFrame({'Time': array[0,:], 'n_persons': array[1,:]}) df.set_index('Time', inplace=True) n_persons = Timeseries(data=array, interpolation_scheme='linear') - Create a timeseries object from .csv file: .. code-block:: python n_persons = Timeseries.from_csv('test.csv', interpolation_scheme='previous') Windows: ^^^^^^^^^^^^^^^^^^^^^^^^^^ In the Simulation windows can be added. Windows create additional air change in the zone dependent of the indoor- and outdoor-temperatures, the opening state and the geometry. The window can have three states: - 0: closed - 1: tilted - 2: opened The window has the following parameters: - hight: the hight of the window [m]; default is 1 - area: the area of the window [m²]; default is 1 - state: state of the window; 0: closed, 1: tilted; 2: opened; default is 0 (closed) - c_ref: Austauschkoeffizient [m^0.5 / h * K^0.5], default is 100 - a_tilted: effective ventilation area for tilted window [m²]; default is calculated from the window geometry - a_opened: effective ventilation area for opened window [m²]; default is calculated from the window geometry - Create a window: .. code-block:: python from src.bph_co2.window import Window window_state = Timeseries.from_csv('window_state.csv', interpolation_scheme='previous') window = Window(hight=1, area=1, state=window_state) - Add window to the simulation: The windows are specified as a list of window objects: .. code-block:: python sim.windows = [window]


نیازمندی

مقدار نام
- pandas
- numpy
- pandasgui
- progress


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl bph2-co2-1.0.4:

    pip install bph2-co2-1.0.4.whl


نصب پکیج tar.gz bph2-co2-1.0.4:

    pip install bph2-co2-1.0.4.tar.gz