معرفی شرکت ها


bpd-0.1.2a1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

bpd
ویژگی مقدار
سیستم عامل -
نام فایل bpd-0.1.2a1
نام bpd
نسخه کتابخانه 0.1.2a1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده CADIC Jean-Maximilien
ایمیل نویسنده git@zakuro.ai
آدرس صفحه اصلی https://github.com/zakuro-ai/bpd
آدرس اینترنتی https://pypi.org/project/bpd/
مجوز MIT
<h1 align="center"> <br> <img src="https://drive.google.com/uc?id=1CV1tY4jcZDO4g_CLhGQK5VUN2q9SNsll" width="200"> <br> bpd <br> </h1> <p align="center"> <a href="#modules">Modules</a> • <a href="#code-structure">Code structure</a> • <a href="#installing-the-application">Installing the application</a> • <a href="#makefile-commands">Makefile commands</a> • <a href="#environments">Environments</a> • <a href="#running-the-application">Running the application</a>• <a href="#notebook">Notebook</a>• <a href="#pipeline">Pipeline</a>• <a href="#ressources">Ressources</a> </p> # Code structure ```python from setuptools import setup from bpd import __version__ setup( name="bpd", version=__version__, short_description="bpd", packages=[ "bpd", "bpd.dask", "bpd.dask.types", "bpd.pandas", "bpd.pyspark", "bpd.pyspark.udf", "bpd.tests", ], long_description="".join(open("README.md", "r").readlines()), long_description_content_type="text/markdown", include_package_data=True, package_data={"": ["*.yml"]}, url="https://github.com/zakuro-ai/bpd", license="MIT", author="CADIC Jean-Maximilien", python_requires=">=3.6", install_requires=[r.rsplit()[0] for r in open("requirements.txt")], author_email="git@zakuro.ai", description="bpd", platforms="linux_debian_10_x86_64", classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", ], ) ``` # Installing the application To clone and run this application, you'll need the following installed on your computer: - [Git](https://git-scm.com) - Docker Desktop - [Install Docker Desktop on Mac](https://docs.docker.com/docker-for-mac/install/) - [Install Docker Desktop on Windows](https://docs.docker.com/desktop/install/windows-install/) - [Install Docker Desktop on Linux](https://docs.docker.com/desktop/install/linux-install/) - [Python](https://www.python.org/downloads/) Install bpd: ```bash # Clone this repository and install the code git clone https://github.com/JeanMaximilienCadic/bpd # Go into the repository cd bpd ``` # Makefile commands Exhaustive list of make commands: ``` install_wheels sandbox_cpu sandbox_gpu build_sandbox push_environment push_container_sandbox push_container_vanilla pull_container_vanilla pull_container_sandbox build_vanilla build_wheels auto_branch ``` # Environments ## Docker > **Note** > > Running this application by using Docker is recommended. To build and run the docker image ``` make build make sandbox ``` ## PythonEnv > **Warning** > > Running this application by using PythonEnv is possible but *not* recommended. ``` make install_wheels ``` # Running the application ```console make tests ``` ``` =1= TEST PASSED : bpd =1= TEST PASSED : bpd.dask =1= TEST PASSED : bpd.dask.types =1= TEST PASSED : bpd.pandas =1= TEST PASSED : bpd.pyspark =1= TEST PASSED : bpd.pyspark.udf =1= TEST PASSED : bpd.tests +-----------+-------+-------------+-------------+-------+----+------------------------+---+-------+ |Pregnancies|Glucose|BloodPressure|SkinThickness|Insulin| BMI|DiabetesPedigreeFunction|Age|Outcome| +-----------+-------+-------------+-------------+-------+----+------------------------+---+-------+ | 6| 148| 72| 35| 0|33.6| 0.627| 50| 1| | 1| 85| 66| 29| 0|26.6| 0.351| 31| 0| | 8| 183| 64| 0| 0|23.3| 0.672| 32| 1| | 1| 89| 66| 23| 94|28.1| 0.167| 21| 0| | 0| 137| 40| 35| 168|43.1| 2.288| 33| 1| | 5| 116| 74| 0| 0|25.6| 0.201| 30| 0| | 3| 78| 50| 32| 88| 31| 0.248| 26| 1| | 10| 115| 0| 0| 0|35.3| 0.134| 29| 0| | 2| 197| 70| 45| 543|30.5| 0.158| 53| 1| | 8| 125| 96| 0| 0| 0| 0.232| 54| 1| | 4| 110| 92| 0| 0|37.6| 0.191| 30| 0| | 10| 168| 74| 0| 0| 38| 0.537| 34| 1| | 10| 139| 80| 0| 0|27.1| 1.441| 57| 0| | 1| 189| 60| 23| 846|30.1| 0.398| 59| 1| | 5| 166| 72| 19| 175|25.8| 0.587| 51| 1| | 7| 100| 0| 0| 0| 30| 0.484| 32| 1| | 0| 118| 84| 47| 230|45.8| 0.551| 31| 1| | 7| 107| 74| 0| 0|29.6| 0.254| 31| 1| | 1| 103| 30| 38| 83|43.3| 0.183| 33| 0| | 1| 115| 70| 30| 96|34.6| 0.529| 32| 1| +-----------+-------+-------------+-------------+-------+----+------------------------+---+-------+ only showing top 20 rows . ---------------------------------------------------------------------- Ran 1 test in 2.701s OK ``` # Notebook ## Pipeline ```python from gnutools import fs from gnutools.remote import gdrivezip from bpd import cfg from bpd.dask import DataFrame, udf from bpd.dask import functions as F from bpd.dask.pipelines import * ``` ```python # Import a sample dataset df = DataFrame({"filename": fs.listfiles(gdrivezip(cfg.gdrive.google_mini)[0], [".wav"])}) df.compute() ``` <div> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>filename</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/wow/919...</td> </tr> <tr> <th>1</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/wow/6a2...</td> </tr> <tr> <th>2</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/wow/682...</td> </tr> <tr> <th>3</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/wow/beb...</td> </tr> <tr> <th>4</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/wow/d37...</td> </tr> </tbody> </table> </div> ```python # Register a user-defined function @udf def word(f): return fs.name(fs.parent(f)) @udf def initial(classe): return classe[0] @udf def lists(classes): return list(set(classes)) df.run_pipelines( [ { select_cols: ("filename",), pipeline: ( ("classe", word(F.col("filename"))), ("name", udf(fs.name)(F.col("filename"))), ), }, { group_on: "classe", select_cols: ("name", ), pipeline: ( ("initial", initial(F.col("classe"))), ), }, { group_on: "initial", select_cols: ("classe", ), pipeline: ( ("_initial", lists(F.col("classe"))), ), }, ] )\ .withColumnRenamed("_initial", "initial")\ .compute() ``` <div> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>filename</th> <th>initial</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/wow/919...</td> <td>[wow]</td> </tr> <tr> <th>0</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/wow/6a2...</td> <td>[wow]</td> </tr> <tr> <th>0</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/wow/682...</td> <td>[wow]</td> </tr> <tr> <th>0</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/wow/beb...</td> <td>[wow]</td> </tr> <tr> <th>0</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/wow/d37...</td> <td>[wow]</td> </tr> </tbody> </table> </div> ## Sequential calls ```python from gnutools import fs from bpd.dask import DataFrame, udf from bpd.dask import functions as F from gnutools.remote import gdrivezip ``` ```python # Import a sample dataset gdrivezip("gdrive://1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE") df = DataFrame({"filename": fs.listfiles("/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE", [".wav"])}) df.compute() ``` <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>filename</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/wow/919...</td> </tr> <tr> <th>1</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/wow/6a2...</td> </tr> <tr> <th>2</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/wow/682...</td> </tr> <tr> <th>3</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/wow/beb...</td> </tr> <tr> <th>4</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/wow/d37...</td> </tr> <tr> <th>...</th> <td>...</td> </tr> <tr> <th>145</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/left/6a...</td> </tr> <tr> <th>146</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/left/e3...</td> </tr> <tr> <th>147</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/left/68...</td> </tr> <tr> <th>148</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/left/e7...</td> </tr> <tr> <th>149</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/left/65...</td> </tr> </tbody> </table> <p>150 rows × 1 columns</p> </div> ```python # Register a user-defined function @udf def word(f): return fs.name(fs.parent(f)) # Apply a udf function df\ .withColumn("classe", word(F.col("filename")))\ .compute() ``` <div> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>filename</th> <th>classe</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/wow/919...</td> <td>wow</td> </tr> <tr> <th>1</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/wow/6a2...</td> <td>wow</td> </tr> <tr> <th>2</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/wow/682...</td> <td>wow</td> </tr> <tr> <th>3</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/wow/beb...</td> <td>wow</td> </tr> <tr> <th>4</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/wow/d37...</td> <td>wow</td> </tr> <tr> <th>...</th> <td>...</td> <td>...</td> </tr> <tr> <th>145</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/left/6a...</td> <td>left</td> </tr> <tr> <th>146</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/left/e3...</td> <td>left</td> </tr> <tr> <th>147</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/left/68...</td> <td>left</td> </tr> <tr> <th>148</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/left/e7...</td> <td>left</td> </tr> <tr> <th>149</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/left/65...</td> <td>left</td> </tr> </tbody> </table> <p>150 rows × 2 columns</p> </div> ```python # You can use inline udf functions df\ .withColumn("name", udf(fs.name)(F.col("filename")))\ .display() ``` <div> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>filename</th> <th>name</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/wow/919...</td> <td>919d3c0e_nohash_2</td> </tr> <tr> <th>1</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/wow/6a2...</td> <td>6a27a9bf_nohash_0</td> </tr> <tr> <th>2</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/wow/682...</td> <td>6823565f_nohash_2</td> </tr> <tr> <th>3</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/wow/beb...</td> <td>beb49c22_nohash_1</td> </tr> <tr> <th>4</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/wow/d37...</td> <td>d37e4bf1_nohash_0</td> </tr> <tr> <th>...</th> <td>...</td> <td>...</td> </tr> <tr> <th>145</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/left/6a...</td> <td>6a27a9bf_nohash_0</td> </tr> <tr> <th>146</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/left/e3...</td> <td>e32ff49d_nohash_0</td> </tr> <tr> <th>147</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/left/68...</td> <td>6823565f_nohash_2</td> </tr> <tr> <th>148</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/left/e7...</td> <td>e77d88fc_nohash_0</td> </tr> <tr> <th>149</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/left/65...</td> <td>659b7fae_nohash_2</td> </tr> </tbody> </table> <p>150 rows × 2 columns</p> </div> ```python # Retrieve the first 3 filename per classe df\ .withColumn("classe", word(F.col("filename")))\ .aggregate("classe")\ .withColumn("filename", F.top_k(F.col("filename"), 3))\ .explode("filename")\ .compute() ``` <div> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>filename</th> </tr> <tr> <th>classe</th> <th></th> </tr> </thead> <tbody> <tr> <th>wow</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/wow/919...</td> </tr> <tr> <th>wow</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/wow/6a2...</td> </tr> <tr> <th>wow</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/wow/682...</td> </tr> <tr> <th>nine</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/nine/0f...</td> </tr> <tr> <th>nine</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/nine/6a...</td> </tr> <tr> <th>...</th> <td>...</td> </tr> <tr> <th>yes</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/yes/0a9...</td> </tr> <tr> <th>yes</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/yes/0a7...</td> </tr> <tr> <th>left</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/left/6a...</td> </tr> <tr> <th>left</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/left/e3...</td> </tr> <tr> <th>left</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/left/68...</td> </tr> </tbody> </table> <p>90 rows × 1 columns</p> </div> ```python # Add the classe column to the original dataframe df = df\ .withColumn("classe", word(F.col("filename"))) # Display the modified dataframe df.display() ``` <div> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>filename</th> <th>classe</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/wow/919...</td> <td>wow</td> </tr> <tr> <th>1</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/wow/6a2...</td> <td>wow</td> </tr> <tr> <th>2</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/wow/682...</td> <td>wow</td> </tr> <tr> <th>3</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/wow/beb...</td> <td>wow</td> </tr> <tr> <th>4</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/wow/d37...</td> <td>wow</td> </tr> <tr> <th>...</th> <td>...</td> <td>...</td> </tr> <tr> <th>145</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/left/6a...</td> <td>left</td> </tr> <tr> <th>146</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/left/e3...</td> <td>left</td> </tr> <tr> <th>147</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/left/68...</td> <td>left</td> </tr> <tr> <th>148</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/left/e7...</td> <td>left</td> </tr> <tr> <th>149</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/left/65...</td> <td>left</td> </tr> </tbody> </table> <p>150 rows × 2 columns</p> </div> ```python # Display the dataframe # Retrieve the first 3 filename per classe @udf def initial(classe): return classe[0] _df = df\ .aggregate("classe")\ .reset_index(hard=False)\ .withColumn("initial", initial(F.col("classe")))\ .select(["classe", "initial"])\ .set_index("classe") # Display the dataframe grouped by classe _df.compute() ``` <div> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>initial</th> </tr> <tr> <th>classe</th> <th></th> </tr> </thead> <tbody> <tr> <th>bed</th> <td>b</td> </tr> <tr> <th>bird</th> <td>b</td> </tr> <tr> <th>cat</th> <td>c</td> </tr> <tr> <th>dog</th> <td>d</td> </tr> <tr> <th>down</th> <td>d</td> </tr> <tr> <th>eight</th> <td>e</td> </tr> <tr> <th>five</th> <td>f</td> </tr> <tr> <th>four</th> <td>f</td> </tr> <tr> <th>go</th> <td>g</td> </tr> <tr> <th>happy</th> <td>h</td> </tr> <tr> <th>house</th> <td>h</td> </tr> <tr> <th>left</th> <td>l</td> </tr> <tr> <th>marvin</th> <td>m</td> </tr> <tr> <th>nine</th> <td>n</td> </tr> <tr> <th>no</th> <td>n</td> </tr> <tr> <th>off</th> <td>o</td> </tr> <tr> <th>on</th> <td>o</td> </tr> <tr> <th>one</th> <td>o</td> </tr> <tr> <th>right</th> <td>r</td> </tr> <tr> <th>seven</th> <td>s</td> </tr> <tr> <th>sheila</th> <td>s</td> </tr> <tr> <th>six</th> <td>s</td> </tr> <tr> <th>stop</th> <td>s</td> </tr> <tr> <th>three</th> <td>t</td> </tr> <tr> <th>tree</th> <td>t</td> </tr> <tr> <th>two</th> <td>t</td> </tr> <tr> <th>up</th> <td>u</td> </tr> <tr> <th>wow</th> <td>w</td> </tr> <tr> <th>yes</th> <td>y</td> </tr> <tr> <th>zero</th> <td>z</td> </tr> </tbody> </table> </div> ```python _df_initial = _df.reset_index(hard=False).aggregate("initial") _df_initial.compute() ``` <div> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>classe</th> </tr> <tr> <th>initial</th> <th></th> </tr> </thead> <tbody> <tr> <th>b</th> <td>[bed, bird]</td> </tr> <tr> <th>c</th> <td>[cat]</td> </tr> <tr> <th>d</th> <td>[dog, down]</td> </tr> <tr> <th>e</th> <td>[eight]</td> </tr> <tr> <th>f</th> <td>[five, four]</td> </tr> <tr> <th>g</th> <td>[go]</td> </tr> <tr> <th>h</th> <td>[happy, house]</td> </tr> <tr> <th>l</th> <td>[left]</td> </tr> <tr> <th>m</th> <td>[marvin]</td> </tr> <tr> <th>n</th> <td>[nine, no]</td> </tr> <tr> <th>o</th> <td>[off, on, one]</td> </tr> <tr> <th>r</th> <td>[right]</td> </tr> <tr> <th>s</th> <td>[seven, sheila, six, stop]</td> </tr> <tr> <th>t</th> <td>[three, tree, two]</td> </tr> <tr> <th>u</th> <td>[up]</td> </tr> <tr> <th>w</th> <td>[wow]</td> </tr> <tr> <th>y</th> <td>[yes]</td> </tr> <tr> <th>z</th> <td>[zero]</td> </tr> </tbody> </table> </div> ```python # Join the dataframes df\ .join(_df, on="classe").drop_column("classe")\ .join(_df_initial, on="initial")\ .display() ``` <div> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>filename</th> <th>initial</th> <th>classe</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/wow/919...</td> <td>w</td> <td>[wow]</td> </tr> <tr> <th>1</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/wow/6a2...</td> <td>w</td> <td>[wow]</td> </tr> <tr> <th>2</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/wow/682...</td> <td>w</td> <td>[wow]</td> </tr> <tr> <th>3</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/wow/beb...</td> <td>w</td> <td>[wow]</td> </tr> <tr> <th>4</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/wow/d37...</td> <td>w</td> <td>[wow]</td> </tr> <tr> <th>...</th> <td>...</td> <td>...</td> <td>...</td> </tr> <tr> <th>13</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/left/6a...</td> <td>l</td> <td>[left]</td> </tr> <tr> <th>14</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/left/e3...</td> <td>l</td> <td>[left]</td> </tr> <tr> <th>15</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/left/68...</td> <td>l</td> <td>[left]</td> </tr> <tr> <th>16</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/left/e7...</td> <td>l</td> <td>[left]</td> </tr> <tr> <th>17</th> <td>/tmp/1y4gwaS7LjYUhwTex1-lNHJJ71nLEh3fE/left/65...</td> <td>l</td> <td>[left]</td> </tr> </tbody> </table> <p>150 rows × 3 columns</p> </div> ## Ressources * Vanilla: https://en.wikipedia.org/wiki/Vanilla_software * Sandbox: https://en.wikipedia.org/wiki/Sandbox_(software_development) * All you need is docker: https://www.theregister.com/2014/05/23/google_containerization_two_billion/ * Dev in containers : https://code.visualstudio.com/docs/remote/containers * Delta lake partitions: https://k21academy.com/microsoft-azure/data-engineer/delta-lake/


نیازمندی

مقدار نام
- numpy
- pandas
- gnutools-python
- tqdm
- pyspark
- distributed
- jupyter
- jupyterlab


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl bpd-0.1.2a1:

    pip install bpd-0.1.2a1.whl


نصب پکیج tar.gz bpd-0.1.2a1:

    pip install bpd-0.1.2a1.tar.gz