معرفی شرکت ها


bore-1.5.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Bayesian Optimization by Density-Ratio Estimation
ویژگی مقدار
سیستم عامل -
نام فایل bore-1.5.0
نام bore
نسخه کتابخانه 1.5.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Louis C. Tiao
ایمیل نویسنده louistiao@gmail.com
آدرس صفحه اصلی https://github.com/ltiao/bore
آدرس اینترنتی https://pypi.org/project/bore/
مجوز MIT license
======================================================= BORE: Bayesian Optimization as Density-Ratio Estimation ======================================================= .. image:: https://img.shields.io/pypi/v/bore.svg :target: https://pypi.python.org/pypi/bore .. image:: https://img.shields.io/travis/ltiao/bore.svg :target: https://travis-ci.org/ltiao/bore .. image:: https://readthedocs.org/projects/bore/badge/?version=latest :target: https://bore.readthedocs.io/en/latest/?badge=latest :alt: Documentation Status .. image:: https://pyup.io/repos/github/ltiao/bore/shield.svg :target: https://pyup.io/repos/github/ltiao/bore/ :alt: Updates A minimalistic implementation of BORE: Bayesian Optimization as Density-Ratio Estimation [1]_ in Python 3 and TensorFlow 2. |featured| Getting Started --------------- Install with ``pip``: .. code-block:: bash $ pip install "bore[tf]" With support for GPU accelaration: .. code-block:: bash $ pip install "bore[tf-gpu]" With support for HpBandSter plugin: .. code-block:: bash $ pip install "bore[tf,hpbandster]" Usage/Examples -------------- This example implements an instantiation of BORE based on a multi-layer perceptron (i.e. a fully-connected feed-forward neural network) classifier. First we build and compile the classifier model using ``MaximizableSequential``: .. code-block:: python from bore.models import MaximizableSequential from tensorflow.keras.layers import Dense # build model classifier = MaximizableSequential() classifier.add(Dense(16, activation="relu")) classifier.add(Dense(16, activation="relu")) classifier.add(Dense(1, activation="sigmoid")) # compile model classifier.compile(optimizer="adam", loss="binary_crossentropy") This syntax should be familiar to anyone who has used a high-level neural network library such as Keras. In fact, ``MaximizableSequential`` is simply a subclass of the ``Sequential`` class from Keras. More specifically, in addition to inheriting the usual functionalities, it provides the ``argmax`` method which finds the input at which the network output is maximized. Using this method, the standard optimization loop can be implemented as follows: .. code-block:: python import numpy as np features = [] targets = [] # initial design features.extend(features_init) targets.extend(targets_init) for i in range(num_iterations): # construct classification problem X = np.vstack(features) y = np.hstack(targets) tau = np.quantile(y, q=0.25) z = np.less(y, tau) # update classifier classifier.fit(X, z, epochs=200, batch_size=64) # suggest new candidate x_next = classifier.argmax(method="L-BFGS-B", num_start_points=3, bounds=bounds) # evaluate blackbox function y_next = blackbox.evaluate(x_next) # update dataset features.append(x_next) targets.append(y_next) For complete end-to-end scripts and to reproduce our results, take a look at the associated `experiments <https://github.com/ltiao/bore-experiments>`_ repository. Features -------- * BORE-MLP: BORE based on a multi-layer perceptron (MLP) classifier * Provides higher-order functions that leverage automatic differentiation to transform Keras models into functions that can easily be optimized by methods in SciPy, not least multi-started quasi-Newton hill-climbing methods such as L-BFGS. Roadmap ------- * Integration with the `Optuna <https://optuna.org/>`_ framework by implementing a `Sampler <https://optuna.readthedocs.io/en/stable/reference/generated/optuna.samplers.BaseSampler.html#optuna.samplers.BaseSampler>`_ plugin. Authors ------- Lead Developers: ++++++++++++++++ +------------------+----------------------------+ | |tiao| | |klein| | +------------------+----------------------------+ | Louis Tiao | Aaron Klein | +------------------+----------------------------+ | https://tiao.io/ | https://aaronkl.github.io/ | +------------------+----------------------------+ Reference --------- .. [1] L. Tiao, A. Klein, C. Archambeau, E. V. Bonilla, M. Seeger, and F. Ramos. `BORE: Bayesian Optimization by Density-Ratio Estimation <https://arxiv.org/abs/2102.09009>`_. In Proceedings of the 38th International Conference on Machine Learning (ICML2021), Virtual (Online), July 2021. Cite: +++++ .. code-block:: @inproceedings{tiao2021-bore, title={{B}ayesian {O}ptimization by {D}ensity-{R}atio {E}stimation}, author={Tiao, Louis and Klein, Aaron and Archambeau, C\'{e}dric and Bonilla, Edwin V and Seeger, Matthias and Ramos, Fabio}, booktitle={Proceedings of the 38th International Conference on Machine Learning (ICML2021)}, address={Virtual (Online)}, year={2021}, month={July} } License ------- MIT License Copyright (c) 2021, Louis C. Tiao Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. .. |tiao| image:: http://gravatar.com/avatar/d8b59298191057fa164edf80f0743fcc?s=120 :align: middle .. |klein| image:: https://via.placeholder.com/120 :align: middle .. |featured| image:: docs/_static/header_1000x618.png :align: middle ======= History ======= 0.1.0 (2019-12-27) ------------------ * First release on PyPI.


نیازمندی

مقدار نام
==1.20.3 numpy
==1.7.0 scipy
==0.29.23 Cython
==0.4.18 ConfigSpace
==0.7.4 hpbandster
==2.5.0 tensorflow
==2.5.0 tensorflow-gpu


زبان مورد نیاز

مقدار نام
>=3.5 Python


نحوه نصب


نصب پکیج whl bore-1.5.0:

    pip install bore-1.5.0.whl


نصب پکیج tar.gz bore-1.5.0:

    pip install bore-1.5.0.tar.gz