معرفی شرکت ها


bootplot-0.0.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

bootplot is a package for black-box uncertainty visualization.
ویژگی مقدار
سیستم عامل -
نام فایل bootplot-0.0.9
نام bootplot
نسخه کتابخانه 0.0.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده David Nabergoj, Erik Štrumbelj,
ایمیل نویسنده davidnabergoj4@gmail.com,
آدرس صفحه اصلی https://github.com/davidnabergoj/bootplot
آدرس اینترنتی https://pypi.org/project/bootplot/
مجوز MIT
![logo](https://raw.githubusercontent.com/davidnabergoj/bootplot/master/logo.png) [![License: MIT](https://img.shields.io/badge/License-MIT-blue.svg)](https://github.com/davidnabergoj/bootplot/blob/main/LICENSE) [![Documentation Status](https://readthedocs.org/projects/bootplot/badge/?version=latest)](https://bootplot.readthedocs.io/en/latest/?badge=latest) [![build](https://github.com/davidnabergoj/bootplot/actions/workflows/build.yml/badge.svg)](https://github.com/davidnabergoj/bootplot/actions/workflows/build.yml) [![tests](https://github.com/davidnabergoj/bootplot/actions/workflows/tests.yml/badge.svg)](https://github.com/davidnabergoj/bootplot/actions/workflows/tests.yml) **bootplot** is a package for black-box uncertainty visualization. By providing a dataset and a plotting function, **bootplot** automatically generates a static image and an animation of your uncertainty. The method works by resampling the original dataset using bootstrap and plotting each bootstrapped sample. The plots are then combined into a single image or an animation. **bootplot** is also especially useful when dealing with small datasets, since it relies on the bootstrap method which robustly estimates uncertainty using resampling. **bootplot** supports datasets represented as numpy arrays or pandas dataframes. Supported image output formats include popular formats such as JPG, PNG, BMP. Supported animation formats include popular formats such as GIF and MP4. <!--For a complete list of formats, see the [Pillow documentation](https://pillow.readthedocs.io/en/stable/handbook/image-file-formats.html) and the [FFMPEG documentation](https://ffmpeg.org/ffmpeg-formats.html).--> ## Installation **bootplot** requires Python version 3.8 or greater. You can install it using: ``` pip install bootplot ``` Alternatively, you can install **bootplot** using: ``` git clone https://github.com/davidnabergoj/bootplot cd bootplot python setup.py install ``` ## Example Suppose we have some data and their corresponding targets. We can model our targets with a regression line and visualize the uncertainty with the following code: ```python import numpy as np from sklearn.linear_model import LinearRegression from bootplot import bootplot def plot_regression(data_subset, data_full, ax): # Plot full dataset ax.scatter(data_full[:, 0], data_full[:, 1]) # Plot regression line trained on the subset lr = LinearRegression() lr.fit(data_subset[:, 0].reshape(-1, 1), data_subset[:, 1]) ax.plot([-10, 10], lr.predict([[-10], [10]]), c='r') # Show root mean squared error in a text box rmse = np.sqrt(np.mean(np.square(data_subset[:, 1] - lr.predict(data_subset[:, 0].reshape(-1, 1))))) bbox_kwargs = dict(facecolor='none', edgecolor='black', pad=10.0) ax.text(x=0, y=-8, s=f'RMSE: {rmse:.4f}', fontsize=12, ha='center', bbox=bbox_kwargs) ax.set_xlim(-10, 10) ax.set_ylim(-10, 10) if __name__ == '__main__': np.random.seed(0) # Dataset to be modeled dataset = np.random.randn(100, 2) noise = np.random.randn(len(dataset)) * 2.5 dataset[:, 1] = dataset[:, 0] * 1.5 + 2 + noise # Create image and animation that show uncertainty bootplot( plot_regression, dataset, output_image_path='demo_image.png', output_animation_path='demo_animation.gif', verbose=True ) ``` This will generate a static image and an animation, as shown below. The static image on points shows the full scattered dataset in blue and regression lines that correspond to each bootstrapped sample of the dataset in red. The spread of regression lines represents uncertainty according to the bootstrap process. We can also see the uncertainty in root mean squared error (RMSE). We see that only the first digit of RMSE is significant, since the decimal part is blurred. The animation on the right displays uncertainty by iterating over a sequence of plots containing regression lines. <table> <tr> <td><img src="https://raw.githubusercontent.com/davidnabergoj/bootplot/master/demo_image.png"></td> <td><img src="https://raw.githubusercontent.com/davidnabergoj/bootplot/master/demo_animation.gif"></td> </tr> </table> See the [examples](examples) folder for more examples, including bar charts, point plots, polynomial regression models, pie charts, text plots and pandas dataframes. ## Documentation Read the documentation and check out tutorials at https://bootplot.readthedocs.io/en/latest/


نیازمندی

مقدار نام
- numpy
- imageio
- imageio-ffmpeg
- matplotlib
- tqdm
- pillow
- scipy
- scikit-image
- scikit-learn
- opencv-python
- networkx
- pandas


زبان مورد نیاز

مقدار نام
>=3.8 Python


نحوه نصب


نصب پکیج whl bootplot-0.0.9:

    pip install bootplot-0.0.9.whl


نصب پکیج tar.gz bootplot-0.0.9:

    pip install bootplot-0.0.9.tar.gz