معرفی شرکت ها


boostsa-0.2.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A package to compute bootstrap sampling significance test
ویژگی مقدار
سیستم عامل -
نام فایل boostsa-0.2.9
نام boostsa
نسخه کتابخانه 0.2.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Tommaso Fornaciari
ایمیل نویسنده fornaciari@unibocconi.it
آدرس صفحه اصلی https://github.com/fornaciari/bootstrap
آدرس اینترنتی https://pypi.org/project/boostsa/
مجوز MIT license
boostsa - BOOtSTrap SAmpling in pyhton ====================================== .. image:: https://img.shields.io/pypi/v/boostsa.svg :target: https://pypi.python.org/pypi/boostsa .. image:: https://img.shields.io/github/license/fornaciari/boostsa :target: https://lbesson.mit-license.org/ :alt: License .. image:: https://github.com/fornaciari/boostsa/workflows/Python%20Package/badge.svg :target: https://github.com/fornaciari/boostsa/actions .. image:: https://readthedocs.org/projects/boostsa/badge/?version=latest :target: https://boostsa.readthedocs.io/en/latest/?badge=latest :alt: Documentation Status .. image:: https://colab.research.google.com/assets/colab-badge.svg :target: https://colab.research.google.com/drive/1pkbjouxjub9ve0PlVZaW_we_r1hz6Hf-#scrollTo=TGj4udXVb6Ji :alt: Open In Colab Intro ----- boostsa - BOOtSTrap SAmpinlg - is a tool to compute bootstrap sampling significance test, even in the pipeline of a complex experimental design... - Free software: MIT license - Documentation: https://boostsa.readthedocs.io. Google colab ------------ .. |colab1| image:: https://colab.research.google.com/assets/colab-badge.svg :target: https://colab.research.google.com/drive/1pkbjouxjub9ve0PlVZaW_we_r1hz6Hf-#scrollTo=TGj4udXVb6Ji :alt: Open In Colab +----------------------------------------------------------------+--------------------+ | Name | Link | +================================================================+====================+ | You can try boostsa here: | |colab1| | +----------------------------------------------------------------+--------------------+ Installation ------------ .. code-block:: bash pip install -U boostsa Getting started --------------- First, import ``boostsa``: .. code-block:: python from boostsa import Bootstrap Then, create a boostrap instance. You will use it to store your experiments' results and to compute the bootstrap sampling significance test: .. code-block:: python boot = Bootstrap() Inputs ^^^^^^ The assumption is that you ran at least two classification task experiments, which you want compare. One is your *baseline*, or *control*, or *hypothesis 0* (*h0*). The other one is the *experimental condition* that hopefully beats the baseline, or *treatment*, or *hypothesis 1* (*h1*). You compare the *h0* and *h1* predictions against the same targets. Therefore, *h0 predictions*, *h1 predictions* and *targets* will be the your ``Bootstrap`` instance's data inputs. Outputs ^^^^^^^ By defalut, boostsa produces two output files: - ``results.tsv``, that contains the experiments' performance and the (possible) significance levels; - ``outcomes.json``, that contains targets and predictions for all the experimental conditions. You can define the outputs when you create the instance, using the following parameters: - ``save_results``, type: ``bool``, default: ``True``. This determines if you want to save the results. - ``save_outcomes``, type: ``bool``, default: ``True``. This determines if you want to save the experiments' outcomes.. - ``dir_out``, type: ``str``, default: ``''``, that is your working directory. This indicates the directory where to save the results. For example, if you want to save only the results in a particular folder, you will create an instance like this: .. code-block:: python boot = Bootstrap(save_outcomes=False, dir_out='my/favourite/directory/') Test function ------------- In the simplest conditions, you will run the bootstrap sampling significance test with the ``test`` function. It takes the following inputs: - ``targs``, type: ``list`` or ``str``. They are the targets, or *gold standard*, that you use as benchmark to measure the *h0* and *h1* predictions' performance. They can be a **list of integers**, representing the labels' indexes for each data point, or a string. In such case, the string will be interpreted as the **path** to a text file containing a single integer in each row, having the same meaning as for the list input. - ``h0_preds``, type: ``list`` or ``str``. The *h0* predictions, in the same formats of ``targs``. - ``h1_preds``, type: ``list`` or ``str``. The *h1* predictions, in the same formats as above. - ``h0_name``, type: ``str``, default: ``h0``. Expression to describe the *h0* condition. - ``h1_name``, type: ``str``, default: ``h1``. Expression to describe the *h1* condition. - ``n_loops``, type: ``int``, default: ``100``. Number of iterations for computing the bootstrap sampling. - ``sample_size``, type: ``float``, default: ``.1``. Percentage of data points sampled, with respect to their whole set. The admitted values range between 0.05 (5%) and 0.5 (50%). - ``verbose``, type: ``bool``, default: ``False``. If true, the experiments' performance is shown. For example: .. code-block:: python boot.test(targs='../test_boot/h0.0/targs.txt', h0_preds='../test_boot/h0.0/preds.txt', h1_preds='../test_boot/h1.0/preds.txt', n_loops=1000, sample_size=.2, verbose=True) The ouput will be: .. sourcecode:: total size............... 1000 sample size.............. 200 targs count: ['class 0 freq 465 perc 46.50%', 'class 1 freq 535 perc 53.50%'] h0 preds count: ['class 0 freq 339 perc 33.90%', 'class 1 freq 661 perc 66.10%'] h1 preds count: ['class 0 freq 500 perc 50.00%', 'class 1 freq 500 perc 50.00%'] h0 F-measure............. 67.76 h1 F-measure............. 74.07 diff... 6.31 h0 accuracy.............. 69.0 h1 accuracy.............. 74.1 diff... 5.1 h0 precision............. 69.94 h1 precision............. 74.1 diff... 4.16 h0 recall................ 67.96 h1 recall................ 74.22 diff... 6.26 bootstrap: 100%|███████████████████████████| 1000/1000 [00:07<00:00, 139.84it/s] count sample diff f1 is twice tot diff f1....... 37 / 1000 p < 0.037 * count sample diff acc is twice tot diff acc...... 73 / 1000 p < 0.073 count sample diff prec is twice tot diff prec..... 111 / 1000 p < 0.111 count sample diff rec is twice tot diff rec ..... 27 / 1000 p < 0.027 * Out[3]: f1 diff_f1 sign_f1 acc diff_acc sign_acc prec diff_prec sign_prec rec diff_rec sign_rec h0 67.76 69.0 69.94 67.96 h1 74.07 6.31 * 74.1 5.1 74.10 4.16 74.22 6.26 * That's it! For more complex experimental designs and technical/ethical considerations, please refer to the documentation page.


نیازمندی

مقدار نام
==21.0.1 pip
==0.37.1 wheel
==3.3.0 twine
==1.7.3 scipy
- tqdm
- pandas
- numpy
- sklearn


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl boostsa-0.2.9:

    pip install boostsa-0.2.9.whl


نصب پکیج tar.gz boostsa-0.2.9:

    pip install boostsa-0.2.9.tar.gz