معرفی شرکت ها


bonndit-0.3.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

The bonndit package contains the latest diffusion imaging tools developed at the University of Bonn.
ویژگی مقدار
سیستم عامل -
نام فایل bonndit-0.3.1
نام bonndit
نسخه کتابخانه 0.3.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Johannes Gruen
ایمیل نویسنده jgruen@uni-bonn.de
آدرس صفحه اصلی https://github.com/MedVisBonn/bonndit
آدرس اینترنتی https://pypi.org/project/bonndit/
مجوز GNU General Public License v3
======= bonndit ======= .. image:: https://badge.fury.io/py/bonndit.svg :target: https://badge.fury.io/py/bonndit .. image:: https://readthedocs.org/projects/bonndit/badge/?version=latest :target: https://bonndit.readthedocs.io/en/latest/?badge=latest :alt: Documentation Status The bonndit package contains computational tools for diffusion MRI processing developed at the University of Bonn. bonndit implements constrained single and multi tissue deconvolution with higher-order tensor fODFs [Ankele17]_, and the extraction of principal fiber directions with low-rank tensor approximation [Schultz08]_. It also includes code for fiber tractography based on higher-order tensor fODFs, and for filtering the resulting set of streamlines. In particular, bonndit implements spatially regularized tracking using joint tensor decomposition or an Unscented Kalman Filter [Gruen23]_. It also contains code from a study in which we compared the strategy of selecting the most suitable number of fiber compartments per voxel to an adaptive model averaging which reduced the model uncertainty [Gruen22]_. Finally, the package includes code for suitably constrained fitting of the Diffusional Kurtosis (DKI) model, and computation of corresponding invariants [Groeschel16]_. * Free software: GNU General Public License v3 * Documentation: https://bonndit.readthedocs.io. Installation ------------ To install bonndit via pip, run the following command .. code-block:: console $ pip install bonndit To install bonndit via conda, run .. code-block:: console $ conda install bonndit -c xderes -c conda-forge Features -------- An overview of the scripts and functionality included in bonndit is given in `our documentation <https://bonndit.readthedocs.io/en/latest/>`_. It also includes `a tutorial for performing fiber tracking with our code <https://bonndit.readthedocs.io/en/latest/gettingstarted.html>`_. Reference ---------- If you use our software as part of a scientific project, please cite the corresponding publications. The method implemented in :code:`stdeconv` and :code:`mtdeconv` was first introduced in .. [Ankele16] Michael Ankele, Lek-Heng Lim, Samuel Groeschel, Thomas Schultz: Fast and Accurate Multi-Tissue Deconvolution Using SHORE and H-psd Tensors. In: Proc. Medical Image Analysis and Computer-Aided Intervention (MICCAI) Part III, pp. 502-510, vol. 9902 of LNCS, Springer, 2016 It was refined and extended in .. [Ankele17] Michael Ankele, Lek-Heng Lim, Samuel Groeschel, Thomas Schultz: Versatile, Robust, and Efficient Tractography With Constrained Higher-Order Tensor fODFs. In: Int'l J. of Computer Assisted Radiology and Surgery, 12(8):1257-1270, 2017 The methods implemented in :code:`low-rank-k-approx` was first introduced in .. [Schultz08] Thomas Schultz, Hans-Peter Seidel: Estimating Crossing Fibers: A Tensor Decomposition Approach. In: IEEE Transactions on Visualization and Computer Graphics, 14(6):1635-42, 2008 The methods implemented in :code:`peak-modelling` was first introduced in .. [Gruen21] Johannes Grün, Gemma van der Voort, Thomas Schultz: Reducing Model Uncertainty in Crossing Fiber Tractography. In proceedings of EG Workshop on Visual Computing for Biology and Medicine, pages 55-64, 2021 Extended in: .. [Gruen22] Johannes Grün, Gemma van der Voort, Thomas Schultz: Model Averaging and Bootstrap Consensus Based Uncertainty Reduction in Diffusion MRI Tractography. In: Computer Graphics Forum 42(1):217-230, 2023 The regularized tractography methods (joint low-rank and low-rank UKF) were first implemented in :code:`prob-tracking` and introduced in .. [Gruen23] Johannes Grün, Samuel Gröschel, Thomas Schultz: Spatially Regularized Low-Rank Tensor Approximation for Accurate and Fast Tractography. In NeuroImage 271:120004, 2023 The use of quadratic cone programming to make the kurtosis fit more stable which is implemented in :code:`kurtosis` has been explained in the methods section of .. [Groeschel16] Samuel Groeschel, G. E. Hagberg, T. Schultz, D. Z. Balla, U. Klose, T.-K. Hauser, T. Nägele, O. Bieri, T. Prasloski, A. MacKay, I. Krägeloh-Mann, K. Scheffler: Assessing white matter microstructure in brain regions with different myelin architecture using MRI. In: PLOS ONE 11(11):e0167274, 2016 PDFs can be obtained from the respective publisher, or the academic homepage of Thomas Schultz: https://cg.cs.uni-bonn.de/person/prof-dr-thomas-schultz Authors ------- * **Michael Ankele** - *Constrained spherical deconvolution with tensor fODFs* - [momentarylapse] (https://github.com/momentarylapse) * **Johannes Grün** - *Fiber tracking with spatial regularization or model averaging* - [JoGruen] (https://github.com/JoGruen) * **Olivier Morelle** - *Code curation, documentation and testing* [Oli4] (https://github.com/Oli4) * **Thomas Schultz** - *DKI fitting, supervision and contributions throughout* - [ThomasSchultz] (https://github.com/ThomasSchultz) Credits ------- This package was created with Cookiecutter_ and the `audreyr/cookiecutter-pypackage`_ project template. .. _Cookiecutter: https://github.com/audreyr/cookiecutter .. _`audreyr/cookiecutter-pypackage`: https://github.com/audreyr/cookiecutter-pypackage ======= History ======= 0.3.1 (2023-03-15) ------------------- * Included UKF tractography * Included regularized tractography 0.2.0 (2021-09-17) ------------------- * Included the missing steps of the whole tracking pipeline. 0.1.2 (2019-02-26) ------------------- * 'mtdeconv': If response is available, files needed for the computation of the response are not loaded. 0.1.1 (2019-02-06) ------------------- * First release on PyPI. 0.1.0 (2019-02-06) ------------------ * Making repository public on Github


نحوه نصب


نصب پکیج whl bonndit-0.3.1:

    pip install bonndit-0.3.1.whl


نصب پکیج tar.gz bonndit-0.3.1:

    pip install bonndit-0.3.1.tar.gz