معرفی شرکت ها


bomwater-0.0.8


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A tool for requesting data from BoM Water Data service.
ویژگی مقدار
سیستم عامل -
نام فایل bomwater-0.0.8
نام bomwater
نسخه کتابخانه 0.0.8
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Andrew Freebairn
ایمیل نویسنده andrew.freebairn@csiro.au
آدرس صفحه اصلی https://github.com/csiro-hydroinformatics/pybomwater
آدرس اینترنتی https://pypi.org/project/bomwater/
مجوز -
# BoM Water A python tool for requesting data from BoM Sensor Observation Service (SOS2, as WaterML 2.0 format) [![license](http://img.shields.io/badge/license-MIT-blue.svg)]() ![status](https://img.shields.io/badge/status-alpha-blue.svg) [![Build status - master](https://travis-ci.com/csiro-hydroinformatics/pybomwater.svg?branch=main)]() ![pypi](https://img.shields.io/pypi/v/bomwater.svg?logo=python&logoColor=white) [![codecov](https://codecov.io/gh/csiro-hydroinformatics/pybomwater/branch/main/graph/badge.svg?token=uj1VUQu7dT)](https://codecov.io/gh/csiro-hydroinformatics/pybomwater) This package has been developed to access to the BoM Water Data Sensor Observation Service (SOS). With a goal to easily and efficiently integrate data into scientific workflows ## License MIT-derived (see [License.txt](LICENSE)) ## Installation From pypi: `pip install bomwater` From source: `python setup.py install` ## Usage see [Jupyter Notebook example](https://github.com/csiro-hydroinformatics/bomwater-notebook) --- **NOTE** The first time a BomWater object is instantiated (bm = bom_water.BomWater()) a cache of data is created. This process obtains data from the BoM service and will take a little while to complete. Once cached this process is not repeated and performance will return to normal. --- ## Documentation Bureau of Meteorology (BoM) documentation on using their SOS service is available at the following links: * [BoM Water Data service ](http://www.bom.gov.au/waterdata/services) * [BoM Notes](http://www.bom.gov.au/metadata/catalogue/19115/ANZCW0503900528) * [BoM Guide to Sensor Observation Services (SOS2)](https://github.com/csiro-hydroinformatics/bom_water/blob/main/doc/Guide_to_Sensor_Observation_Services_(SOS2)_for_Water_Data_Online_v1.0.1.pdf) ### [The following cells implement requests that access the BoM SOS2 service.](https://github.com/csiro-hydroinformatics/bom_water/blob/main/doc/Guide_to_Sensor_Observation_Services_(SOS2)_for_Water_Data_Online_v1.0.1.pdf#page=14) ### GetCapabilties Lists services available and the filters that can be used to select data output by those services. It also provides an overview of parameters, time series types and geographic area covered by the services. ### GetFeatureOfInterest Provides details about a set of geographical features or locations at which observations are measured. They can be selected according to the parameter measured, type of time series available, and area or point location. ### GetDataAvailability Lists the type of data available for a ‘feature of interest’ and its coverage. This includes a list of parameters, the time series types available for each of the parameters, and the observed period of record for each time series type. ### GetObservation Returns observations of a specified ‘feature of interest’ and parameter, within a specific time series type. Each observation has a datetime, value, quality and interpolation type. ### [Parameter currently available via SOS2](https://github.com/csiro-hydroinformatics/bom_water/blob/main/doc/Guide_to_Sensor_Observation_Services_(SOS2)_for_Water_Data_Online_v1.0.1.pdf#page=13) |Parameter | Water regulation Data Subcategory | |:--- |:--- | |Dry Air Temperature | 4f | |Electrical Conductivity @ 25C | 9a | |Evaporation | 4c | |Ground Water Level | 2a | |Rainfall | 4a | |Relative Humidity | 4h | |Storage Level | 3a | |Storage Volume | 3b | |Turbidity | 9d | |Water Course Discharge (standard time series types) | 1b | |Water Course Discharge (flood warning time series types) | 11b | |Water Course Level (standard time series types) | 1a | |Water Course Level (flood warning time series types) | 11a | |Water pH | 9g | |Water Temperature | 9h | |Wind Direction | 4 | ### [Timeseries pattern and aggreated available](https://github.com/csiro-hydroinformatics/bom_water/blob/main/doc/Guide_to_Sensor_Observation_Services_(SOS2)_for_Water_Data_Online_v1.0.1.pdf#page=37) |Time series name | Procedure | Identifier Time series description | |:---|:---|:---| |DMQaQc.Merged.DailyMean.24HR| Pat1_C_B_1_DailyMean or Pat9_C_B_1_DailyMean | DMQaQc.Merged.AsStored.1 timeseries aggregated to daily means, reported from midnight to midnight. | |DMQaQc.Merged.DailyMax.24HR | Pat1_C_B_1_DailyMax or Pat9_C_B_1_DailyMax | Maximum of values in the DMQaQc.Merged.AsStored.1 timeseries - from midnight to midnight | |DMQaQc.Merged.DailyMin.24HR | Pat1_C_B_1_DailyMin or Pat9_C_B_1_DailyMin | Minimum of values in the DMQaQc.Merged.AsStored.1 timeseries - from midnight to midnight. | |DMQaQc.Merged.MonthlyMean.CalMonth| Pat1_C_B_1_MonthlyMean or Pat9_C_B_1_MonthlyMean | DMQaQc.Merged.AsStored.1 timeseries aggregated to monthly means. | |DMQaQc.Merged.YearlyMean.CalYear | Pat1_C_B_1_YearlyMean or Pat9_C_B_1_YearlyMean | DMQaQc.Merged.AsStored.1 timeseries aggregated to yearly means. | |DMQaQc.Merged.DailyTotal.09HR | Pat2_C_B_1_DailyTot09 | DMQaQc.Merged.AsStored.1 timeseries aggregated to daily totals, reported from 9am to 9am. | |DMQaQc.Merged.DailyTotal.24HR|Pat2_C_B_1_DailyTot24 | DMQaQc.Merged.AsStored.1 timeseries aggregated to daily totals,reported from midnight to midnight.| |DMQaQc.Merged.MonthlyTotal.CalMonth|Pat2_C_B_1_MonthlyTot24 | DMQaQc.Merged.AsStored.1 timeseries aggregated to monthly totals.| |DMQaQc.Merged.YearlyTotal.CalYear|Pat2_C_B_1_YearlyTot24 | DMQaQc.Merged.AsStored.1 timeseries aggregated to yearly totals.| |DMQaQc.Merged.HourlyMean.HR|Pat3_C_B_1_HourlyMean | DMQaQc.Merged.AsStored.1 timeseries aggregated to hourly means.| |DMQaQc.Merged.DailyMean.24HR|Pat3_C_B_1_DailyMean | DMQaQc.Merged.AsStored.1 timeseries aggregated to daily means, reported from midnight to midnight.| |DMQaQc.Merged.DailyMax.24HR |Pat3_C_B_1_DailyMax | Maximum of values in the DMQaQc.Merged.AsStored.1 timeseries - from midnight to midnight.| |DMQaQc.Merged.DailyMin.24HR|Pat3_C_B_1_DailyMin | Minimum of values in the DMQaQc.Merged.AsStored.1 timeseries - from midnight to midnight.| |DMQaQc.Merged.MonthlyMean.CalMonth|Pat3_C_B_1_MonthlyMean | DMQaQc.Merged.AsStored.1 timeseries aggregated to monthly means.| |DMQaQc.Merged.YearlyMean.CalYear|Pat3_C_B_1_YearlyMean | DMQaQc.Merged.AsStored.1 timeseries aggregated to yearly means.| |DMQaQc.Merged.HourlyMean.HR|Pat4_C_B_1_HourlyMean | DMQaQc.Merged.AsStored.1 timeseries aggregated to hourly means.| |DMQaQc.Merged.DailyMean.09HR| Pat4_C_B_1_DailyMean09 | DMQaQc.Merged.AsStored.1 timeseries aggregated to daily means, reported from 9am to 9am.| |DMQaQc.Merged.DailyMax.24HR|Pat4_C_B_1_DailyMax | Maximum of values in the DMQaQc.Merged.AsStored.1 timeseries - from midnight to midnight.| |DMQaQc.Merged.DailyMin.24HR|Pat4_C_B_1_DailyMin | Minimum of values in the DMQaQc.Merged.AsStored.1 timeseries - from midnight to midnight.| |DMQaQc.Merged.DailyMean.24HR|Pat4_C_B_1_DailyMean | DMQaQc.Merged.AsStored.1 timeseries aggregated to daily means, reported from midnight to midnight.| |DMQaQc.Merged.MonthlyMean.CalMonth|Pat4_C_B_1_MonthlyMean | DMQaQc.Merged.AsStored.1 timeseries aggregated to monthly means.| |DMQaQc.Merged.YearlyMean.CalYear|Pat4_C_B_1_YearlyMean| DMQaQc.Merged.AsStored.1 timeseries aggregated to yearly means.| |DMQaQc.Merged.HourlyMean.HR|Pat6_C_B_1_HourlyMean or Pat7_C_B_1_HourlyMean | DMQaQc.Merged.AsStored.1 timeseries aggregated to hourly means.| |DMQaQc.Merged.DailyMean.24HR|Pat6_C_B_1_DailyMean or Pat7_C_B_1_DailyMean|DMQaQc.Merged.AsStored.1 timeseries aggregated to daily means, reported from midnight to midnight.| |DMQaQc.Merged.DailyMax.24HR|Pat6_C_B_1_DailyMax or Pat7_C_B_1_DailyMax | Maximum of values in theDMQaQc.Merged.AsStored.1 timeseries - from midnight to midnight.| |DMQaQc.Merged.DailyMin.24HR|Pat6_C_B_1_DailyMin or Pat7_C_B_1_DailyMin | Minimum of values in the DMQaQc.Merged.AsStored.1 timeseries - from midnight to midnight.| |DMQaQc.Merged.MonthlyMean.CalMonth|Pat6_C_B_1_MonthlyMean or Pat7_C_B_1_MonthlyMean | DMQaQc.Merged.AsStored.1 timeseries aggregated to monthly means.| |DMQaQc.Merged.YearlyMean.CalYear |Pat6_C_B_1_YearlyMean or Pat7_C_B_1_YearlyMean | DMQaQc.Merged.AsStored.1 timeseries aggregated to yearly means.| ## [Task list](https://github.com/csiro-hydroinformatics/bom_water/blob/main/tasklist.md)


نیازمندی

مقدار نام
- requests
- iso8601
- pytz
- json5
- xmltodict
- pandas
- geojson
- shapely


نحوه نصب


نصب پکیج whl bomwater-0.0.8:

    pip install bomwater-0.0.8.whl


نصب پکیج tar.gz bomwater-0.0.8:

    pip install bomwater-0.0.8.tar.gz