معرفی شرکت ها


bokehheat-0.0.7


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A python3 bokeh based boolean data, categorical data, numerical data, dendrogram, and heatmap plotting library.
ویژگی مقدار
سیستم عامل -
نام فایل bokehheat-0.0.7
نام bokehheat
نسخه کتابخانه 0.0.7
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Elmar Bucher
ایمیل نویسنده ulmusfagus@tutanota.de
آدرس صفحه اصلی https://gitlab.com/biotransistor/bokehheat
آدرس اینترنتی https://pypi.org/project/bokehheat/
مجوز GPL>=3
# BokehHeat ## Example Results For the real interactive experience please clone or download this repository history/theclusterbar_0.0.6.html and history/theclustermap_0.0.6.html files with your favorite web browser (we recommend [FireFox](https://www.mozilla.org/en-US/firefox/developer/)) or install bokehheat and run this tutorial. ![heat.clusterbar and heat.clustermap images](bokehheat_0.0.6.png) **Figure 1:** This figure shows the static png output from heat.clusterbar and heat.clustermap. The plots were generated with the tutorial below. ## Abstract Bokehheat provides a python3, bokeh based, interactive boolean data, categorical data, numerical data, dendrogram, and heatmap plotting implementation. + Minimal requirement: python >= 3.6, bokeh >= 1.1 + Dependencies: bokeh, matplotlib, pandas, scipy, selenium, phantomjs + Programmer: bue, jenny + Date origin: 2018-08 + License: >= GPLv3 + User manual: this README file + Source code: [https://gitlab.com/biotransistor/bokehheat](https://gitlab.com/biotransistor/bokehheat) Available bokehheat heat plots are: + heat.cdendro: an interactive categorical dendrogram plot implementation. + heat.bbar: an interactive boolean bar plot implementation. + heat.cbar: an interactive categorical bar plot implementation. + heat.qbar: an interactive quantitative bar plot implementation. + heat.stackedbar: an interactive quantitative stacked bar plot implementation. + heat.heatmap: an interactive heatmap implementation. + heat.clusterbar (this is your working horse): an interactive cluster stackedbar implementation which combines heat.cdendro, heat.bbar, heat.cbar, heat.qbar and heat.stackbar under the hood. + heat.clustermap (this is your working horse): an interactive cluster heatmap implementation which combines heat.cdendro, heat.bbar, heat.cbar, heat.qbar and heat.heatmap under the hood. Available bokehheat jheat plots are: + jheat.jdendro: javatreeview compatible dendrogram gtr, atr file output. + jheat.jheatmap: javatreeview compatible heatmap cdt file output. + jheat.jclustermap: javatreeview compatible heatmap cdt, gtr and atr file output, which runs jheat.jdendro and jheat.jheatmap under the hood. ## HowTo Guide How to install bokehheat? ```bash pip3 install bokehheat ``` How to load the bokehheat library? ```python from bokehheat import heat from bokehheat import jheat ``` How to get reference information about how to use each bokehheat module? ```python from bokehheat import heat help(heat.cdendro) help(heat.bbar) help(heat.cbar) help(heat.qbar) help(heat.stackedbar) help(heat.clusterbar) help(heat.heatmap) help(heat.clustermap) ``` How to get reference information about how to use each javatreeview compatible module? ```python from bokehheat import jheat help(jheat.jdendro) help(jheat.jheatmap) help(jheat.jclustermap) ``` How to integrate bokehheat plots into [Jupyter](https://jupyter.org/) Notebook and Lab? Please, have a look at this [page from the official bokeh documentaion](https://docs.bokeh.org/en/latest/docs/user_guide/jupyter.html#userguide-jupyter). How to integrate bokehheat plots into [pweave](https://github.com/mpastell/Pweave) documents? ```python from pweave.bokeh import output_pweave, show output_pweave() o_clustermap, ls_xaxis, ls_yaxis = heat.clustermap(...) show(o_clustermap) ``` ## Tutorial This tutorial guides you through a cluster bar and cluster heatmap generation process. 1. Load libraries needed for this tutorial: ```python # library from bokehheat import heat, jheat from bokeh import io # show from bokeh import palettes # Reds9, RdBu11, YlGn8, Colorblind8 import numpy as np import pandas as pd ``` 1. Prepare data: ```python ls_observation = ['sample_A','sample_B','sample_C','sample_D','sample_E','sample_F','sample_G','sample_H'] ls_variable = ['gene_A','gene_B','gene_C','gene_D','gene_E','gene_F','gene_G','gene_H', 'gene_I'] # generate test data for heatmap ar_z = np.random.rand(9,8) df_matrix_map = pd.DataFrame((ar_z - 0.5) * 2) df_matrix_map.index = ls_variable df_matrix_map.columns = ls_observation df_matrix_map.index.name = 'y' df_matrix_map.columns.name = 'x' # generate test data for stacked barplot a_matrix_bar = np.array([ [1/45, 2/45, 3/45, 4/45, 5/45, 6/45, 7/45, 9/45], [2/45, 3/45, 4/45, 5/45, 6/45, 7/45, 8/45, 1/45], [3/45, 4/45, 5/45, 6/45, 7/45, 8/45, 9/45, 2/45], [4/45, 5/45, 6/45, 7/45, 8/45, 9/45, 1/45, 3/45], [5/45, 6/45, 7/45, 8/45, 9/45, 1/45, 2/45, 4/45], [6/45, 7/45, 8/45, 9/45, 1/45, 2/45, 3/45, 5/45], [7/45, 8/45, 9/45, 1/45, 2/45, 3/45, 4/45, 6/45], [8/45, 9/45, 1/45, 2/45, 3/45, 4/45, 5/45, 7/45], [9/45, 1/45, 2/45, 3/45, 4/45, 5/45, 6/45, 8/45], ]) df_matrix_bar = pd.DataFrame(a_matrix_bar, index=ls_variable, columns=ls_observation) # generate gene color dictionary for stacked barplot ds_stack_color = { # gene 'gene_A': 'yellow', 'gene_B': 'olive', 'gene_C': 'lime', 'gene_D': 'green', 'gene_E': 'teal', 'gene_F': 'cyan', 'gene_G': 'blue', 'gene_H': 'navy', 'gene_I': 'purple', } # generate some gene annotation for heatmap df_variable = pd.DataFrame({ 'y': ls_variable, 'genereal': list(np.random.random(9) * 2 - 1), 'genetype': ['Ligand','Ligand','Ligand','Ligand','Ligand','Ligand','Receptor','Receptor','Receptor'], 'genetype_color': ['Cyan','Cyan','Cyan','Cyan','Cyan','Cyan','Cornflowerblue','Cornflowerblue','Cornflowerblue'], 'geneboole': [False, False, False, True, True, True, False, False, False], }) df_variable.index = df_variable.y # note: this dataframe index has to match either the df_matrix_map.index or df_matrix_map.columns labels! # generate some sample annotation for heatmap and stacked barplot df_observation = pd.DataFrame({ 'x': ls_observation, 'age_year': list(np.random.randint(0,101, 8)), 'sampletype': ['LumA','LumA','LumA','LumB','LumB','Basal','Basal','Basal'], 'sampletype_color': ['Purple','Purple','Purple','Magenta','Magenta','Orange','Orange','Orange'], 'sampleboole': [False, False, True, True, True, True, False, False], }) df_observation.index = df_observation.x # note: this dataframe index has to match either the df_matrix_map.index or df_matrix_map.columns labels! ``` 1. Generate categorical and quantitative sample and gene annotation tuple of tuples: ```python t_yboole = (df_variable, ['geneboole'],'Red','Maroon') # True, False t_ycat = (df_variable, ['genetype'], ['genetype_color']) t_yquant = (df_variable, ['genereal'], [-1], [1], [palettes.Colorblind8][::-1]) t_xboole = (df_observation, ['sampleboole'],'Red','Maroon') # True, False t_xcat = (df_observation, ['sampletype'], ['sampletype_color']) t_xquant = (df_observation, ['age_year'], [0], [128], [palettes.YlGn8][::-1]) tt_boolecatquant_bar = (t_xquant, t_xcat, t_xboole) tt_boolecatquant_map = (t_yboole, t_ycat, t_yquant, t_xboole, t_xcat, t_xquant) ``` 1. Generate the cluster bar: ```python s_file = "theclusterbar.html" # or "theclusterbar.png" o_clusterbar, ls_axis = heat.clusterbar( df_matrix = df_matrix_bar, ds_stack_color = ds_stack_color, b_sum_to_1 = True, tt_axis_annot = tt_boolecatquant_bar, b_dendro = True, #s_method = 'average', #s_metric = 'euclidean', #b_optimal_ordering = False, #i_px = 64, #i_height = 12, #i_width = 12, #i_min_border_px = 128, s_filename = s_file, s_filetitel = 'the Clusterbar', ) ``` 1. Display the cluster bar result: ```python print(f"check out: {s_file}") print(f"axis is: {ls_axis}") io.show(o_clusterbar) ``` 1. Generate the cluster heatmap: ```python s_file = "theclustermap.html" # or "theclustermap.png" o_clustermap, ls_xaxis, ls_yaxis = heat.clustermap( df_matrix = df_matrix_map, ls_color_palette = heat.seismic256, # heat.red256 r_low = -1, r_high = 1, s_z = "log2", tt_axis_annot = tt_boolecatquant_map, b_ydendro = True, b_xdendro = True, #s_method='average', #s_metric='euclidean', #b_optimal_ordering=False, #i_px = 64, #i_height = 12, #i_width = 12, #i_min_border_px = 128, s_filename=s_file, s_filetitel="the Clustermap", ) ``` 1. Display the cluster heatmap result: ```python print(f"check out: {s_file}") print(f"y axis is: {ls_yaxis}") print(f"x axis is: {ls_xaxis}") io.show(o_clustermap) ``` The resulting clustermap should look something like the example result in the section above. 1. Generate cdt, gtr, atr files to be able to study heatmap and clustering in the JavaTreeView and TreeView3 software. ```python t_out = jheat.jclustermap( df_matrix=df_matrix_map, tt_axis_annot = tt_boolecatquant_map, s_xcolor = "age_year", s_ycolor = "genetype", b_xdendro = True, b_ydendro = True, #s_method = 'average', #s_metric = 'euclidean', #b_optimal_ordering = True, s_filename = "jclustermap", ) print(t_out) ``` ## Discussion In bioinformatics a clustered heatmap is a common plot to present gene expression data from many patient samples. There are well established open source clustering software kits like [Cluster and TreeView](http://bonsai.hgc.jp/%7Emdehoon/software/cluster/index.html), [JavaTreeView](http://jtreeview.sourceforge.net/), and [TreeView3](https://bitbucket.org/TreeView3Dev/treeview3/src/master/) for producing and investigating such heatmaps. ### Static cluster heaptmap implementations There exist a wealth of [R](https://cran.r-project.org/) and R/[bioconductor](https://www.bioconductor.org/) packages with static cluster heatmaps functions (e.g. heatmap.2 from the gplots library), each one with his own pros and cons. In Python the static cluster heatmap landscape looks much more deserted. There are some ancient [mathplotlib](https://matplotlib.org/) based implementations like this [active state recipe](https://code.activestate.com/recipes/578175-hierarchical-clustering-heatmap-python/) or the [heatmapcluster](https://github.com/WarrenWeckesser/heatmapcluster) library, or the [hclustering](https://github.com/wwliao/hclustering) library. There is the [seaborn clustermap](https://seaborn.pydata.org/generated/seaborn.clustermap.html) implementation, which looks good but might need hours of tweaking to get an agreeable plot with all the needed information out. So, static heatmaps are not really a tool for exploring data. ### Interactive cluster heatmap implementations There exist d3heatmap a R/d3.js based interactive cluster heatmap packages. And heatmaply, a R/plotly based package. Or on a more basic level R/plotly based cluster heatmaps can be written with the ggdendro and ggplot2 library. But I have not found a full fledged python based interactive cluster heatmap library. Neither Python/[plottly](https://plot.ly/) nor Python/[bokeh](https://bokeh.pydata.org/en/latest/) based. The only Python/bokeh based cluster heatmap implementation I was really aware of was this [listing](https://russodanielp.github.io/blog/plotting-a-heatmap-with-a-dendrogram-using-bokeh/) from Daniel Russo. Later on I found this bokeh based [bkheatmap](https://github.com/wwliao/bkheatmap) implementation from Wen-Wei Liao. ### Synopsis All in all, all of these implementations were not really what I was looking for. That is why I rolled my own. Bokehheat is a [Python3](https://www.python.org/)/[bokeh](https://bokeh.pydata.org/en/latest/) based interactive cluster heatmap library. The challenges this implementation tried to solve are, the library should be: + easy to use with [pandas](https://pandas.pydata.org/) dataframes. + static output, this means there have to be an easy way to generate static png files as output. + interactive output, this means there have to be a easy way to generate hover and zoomable plots. + output should be stored in computer platform independent and easy accessible format, like png files or java script spiced up html file, which can be opened in any webbrowser. + possibility to add as many boolean, categorical, and quantitative y and x annotation bars as wished. + possibility to hierarchical cluster y and/or x axis. + snappy interactivity, even with big datasets with lot of samples and genes. (It turns out bokehheat is ok with hundreds of samples and genes but not with thousands. This is why the jheat.py extension was added, to be easily able to generate JavaTreeView and TreeView3 compatible output.) #### Further directions If you are interested in data visualization, check out Jake VanderPlas talk [Python Visualization Landscape](https://www.youtube.com/watch?v=FytuB8nFHPQ) from the PyCon 2017 in Portland Oregon (USA). ## Contributions + Implementation: Elmar Bucher + Documentation: Jennifer Eng, Elmar Bucher + Helpful discussion: Mark Dane, Daniel Derrick, Hongmei Zhang, Annette Kolodize, Koei Chin, Jim Korkola, Laura Heiser, Matt Melnicki, Bryan Van de Ven, and Daniele Procida.


نیازمندی

مقدار نام
- bokeh
- matplotlib
- pandas
- scipy
- selenium


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl bokehheat-0.0.7:

    pip install bokehheat-0.0.7.whl


نصب پکیج tar.gz bokehheat-0.0.7:

    pip install bokehheat-0.0.7.tar.gz