معرفی شرکت ها


boilr-0.7.4


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Basic framework for training models with PyTorch
ویژگی مقدار
سیستم عامل -
نام فایل boilr-0.7.4
نام boilr
نسخه کتابخانه 0.7.4
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Andrea Dittadi
ایمیل نویسنده andrea.dittadi@gmail.com
آدرس صفحه اصلی https://github.com/addtt/boiler-pytorch
آدرس اینترنتی https://pypi.org/project/boilr/
مجوز -
# boiler-pytorch Basic framework for training stuff in PyTorch. It's quite tailored to projects I've been working on lately, so it's meant for personal use. Its sole purpose is to do away with `boilr`plate code, and having it here makes it easier to share it across projects. ## Install ```shell script pip install boilr ``` ## Usage example/template There's a usage example that can be useful as template. It's a basic VAE for MNIST quickly hacked together. The example files are: - `example.py` - `example_evaluate.py` - `experiments/mnist_experiment/data.py` - `experiments/mnist_experiment/experiment_manager.py` - `models/mnist_vae.py` Install requirements and run the example: ```shell script pip install -r requirements.txt CUDA_VISIBLE_DEVICES=0 python example.py ``` For evaluation: ```shell script CUDA_VISIBLE_DEVICES=0 python example_evaluate.py --ll --ll-samples 100 --load $RUN_NAME ``` using the name of the folder in `output/` generated from running the example. ## Quick reference ### Built-in functionalities The following functionalities are available out-of-the-box: - Easy logging of metrics to tensorboard and to a pickle file. Metrics are collected at every training step, smoothed, and logged/saved at a specified frequency. The amount of smoothing is also customizable. - Summaries of the metrics are automatically printed after each training and testing phase. This can be easily customized. - Training speed, gradient norm (global and per-parameter), and L2 norm of the model parameters are all automatically logged. - It's easy to save images from testing, in a dedicated folder. - Gradient clipping (by global norm), controllable through a command-line argument. - Automatic model checkpointing, with command-line argument to control the maximum number of recent checkpoints to be kept. - Command-line argument to resume training from checkpoint, and everything is taken care of. - Progress bar for training and testing, using `tqdm`. Can be switched off. - Data-dependent initialization (command-line argument). - Reproducibility: set random seed across all devices and Python libraries. - A suite of utility classes and methods in the packages `boilr.nn` and `boilr.utils` (most of them for internal use). In particular `boilr.nn.modules` and `boilr.utils.viz` might be more generally useful. - A long list of command-line arguments to control some of the behaviour above. Some arguments are not directly used, but it's convenient to have them already defined: e.g. if a custom `DataLoader` is necessary, the batch size is easily accessible with `args.batch_size`; and when creating the optimizer, the learning rate is `args.lr`. - See `boilr.options` for package-wide options. Usually it's not necessary to change them, but they give some more flexibility. #### Command-line arguments There are built-in command-line arguments with default values. These defaults can be easily overridden programmatically when making the experiment class that subclasses `boilr`'s. The built-in arguments are the following: - `batch-size`: training batch size (default: None) - `test-batch-size`: test batch size (default: None) - `lr`: learning rate (default: None) - `max-grad-norm`: maximum global norm of the gradient. It is clipped if larger. If None, no clipping is performed. (default: None) - `seed`: random seed (default: 54321) - `tr-log-every`: log training metrics every this number of training steps (default: 1000) - `ts-log-every`: log test metrics every this number of training steps. It must be a multiple of `--tr-log-every` (default: 1000) - `ts-img-every`: save test images every this number of training steps. It must be a multiple of `--ts-log-every` (default: same as `--ts-log-every`) - `checkpoint-every`: save model checkpoint every this number of training steps (default: 1000) - `keep-checkpoint-max`: keep at most this number of most recent model checkpoints (default: 3) - `max-steps`: max number of training steps (default: 1e10) - `max-epochs`: max number of training epochs (default: 1e7) - `nocuda`: do not use cuda (default: False) - `descr`: additional description for experiment name - `dry-run`: do not save anything to disk (default: False) - `resume`: load the run with this name and resume training Additionally, for `VAEExperimentManager`, the following arguments are available: - `ll-every`: evaluate log likelihood (with the importance-weighted bound) every this number of training steps (default: 50000) - `ll-samples`: number of importance-weighted samples to evaluate log likelihood (default: 100) ### Getting started 1. subclass a base dataset manager class; 2. subclass a base model class; 3. subclass a base experiment manager class (the model class is used in here); 4. make a short script that creates the experiment object, uses it to create a `boilr.Trainer`, and runs the trainer; 5. optionally, subclass the base evaluator to set up an "offline" evaluation pipeline. See below for more details. #### Dataset manager class (1) The class `boilr.data.BaseDatasetManager` must be subclassed. The subclass *must* implement the method `_make_datasets` which should return a tuple `(train, test)` with the training and test sets as PyTorch `Dataset`s. A basic implementation of `_make_dataloaders` is already provided, but can be overridden to make custom data loaders. #### Model class (2) One of the model classes must be subclassed to inherit core methods in the base implementation `boilr.models.BaseModel`. These models also automatically subclass `torch.nn.Module` (so it must implement `forward`). In addition, `boilr.models.BaseGenerativeModel` (subclassing `BaseModel`) defines a method `sample_prior` that must be implemented by subclasses. #### Experiment manager class (3) One of the base experiment classes in `boilr.experiments` must be subclassed. The subclass *must* implement: - `_make_datamanager` to create the dataset manager, which should subclass `boilr.data.BaseDatasetManager`; - `_make_model` to create the model, which should subclass `boilr.models.BaseModel`; - `_make_optimizer` to create the optimizer, which should subclass `torch.optim.optimizer.Optimizer`; - `forward_pass` to perform a simple single-pass model evaluation and returns losses and metrics; - `test_procedure` to evaluate the model on the test set (usually heavily based on the `forward_pass` method). Typically should be overridden: - `_define_args_defaults`, `_add_args`, and `_check_args` (or a subset of these) to manage parsing of command-line arguments; - `_make_run_description` which returns a string description of the run, used for output folders; - `save_images` to save output images (e.g. reconstructions and samples in VAEs). May be overridden for additional control: - `post_backward_callback` is called by the `Trainer` after the backward pass but before the optimization step; - `get_metrics_dict` translates a dictionary of results to a dictionary of metrics to be logged (by default this simply copies over the keys); - `train_log_str` and `test_log_str` return log strings for test and training metrics. **Note**: The class `VAEExperimentManager` implements default `test_procedure` and `save_images` methods for variational inference with VAEs. #### Example training script (4) ```python from boilr import Trainer from my_experiment import MyExperimentClass if __name__ == "__main__": experiment = MyExperimentClass() trainer = Trainer(experiment) trainer.run() ``` #### Offline evaluator class (5) If offline evaluation is necessary, `boilr.eval.BaseOfflineEvaluator` can be subclassed by implementing: - `run` to run the evaluation; - as above, `_define_args_defaults`, `_add_args`, and `_check_args` (or a subset of these) to manage parsing of command-line arguments. The method `run` can be executed by simply calling the evaluator object. See `example_evaluate.py`. ### Notes - It also works without `tensorboard`, but it won't save tensorboard logs.


نیازمندی

مقدار نام
>=1.18 numpy
>=1.4 torch
>=0.5 torchvision
>=3.2 matplotlib
- tqdm
>=7.1 pillow


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl boilr-0.7.4:

    pip install boilr-0.7.4.whl


نصب پکیج tar.gz boilr-0.7.4:

    pip install boilr-0.7.4.tar.gz