معرفی شرکت ها


boexplain-0.1.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

BOExplain
ویژگی مقدار
سیستم عامل -
نام فایل boexplain-0.1.1
نام boexplain
نسخه کتابخانه 0.1.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Brandon Lockhart
ایمیل نویسنده brandon_lockhart@sfu.ca
آدرس صفحه اصلی https://github.com/sfu-db/BOExplain
آدرس اینترنتی https://pypi.org/project/boexplain/
مجوز MIT
# BOExplain, Explaining Inference Queries with Bayesian Optimization BOExplain is a library for explaining inference queries with Bayesian optimization. The corresponding paper can be found at https://arxiv.org/abs/2102.05308. ## Installation ``` pip install boexplain ``` ## Documentation The documentation is available at [https://sfu-db.github.io/BOExplain/](https://sfu-db.github.io/BOExplain/). (shortcut to [fmin](https://sfu-db.github.io/BOExplain/api_reference/boexplain.files.search.html#boexplain.files.search.fmin), [fmax](https://sfu-db.github.io/BOExplain/api_reference/boexplain.files.search.html#boexplain.files.search.fmax)) ## Getting Started Derive an explanation for why the predicted rate of having an income over $50K is higher for men compared to women in the UCI ML [Adult dataset](https://archive.ics.uci.edu/ml/datasets/adult). 1. Load the data and prepare it for ML. ``` python import pandas as pd from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split df = pd.read_csv("adult.data", names=[ "Age", "Workclass", "fnlwgt", "Education", "Education-Num", "Marital Status", "Occupation", "Relationship", "Race", "Gender", "Capital Gain", "Capital Loss", "Hours per week", "Country", "Income" ], na_values=" ?") df['Income'].replace({" <=50K": 0, ' >50K': 1}, inplace=True) df['Gender'].replace({" Male": 0, ' Female': 1}, inplace=True) df = pd.get_dummies(df) train, test = train_test_split(df, test_size=0.2) test = test.drop(columns='Income') ``` 2. Define the objective function that trains a random forest classifier and queries the ratio of predicted rates of having an income over $50K between men and women. ``` python def obj(train_filtered): rf = RandomForestClassifier(n_estimators=13, random_state=0) rf.fit(train_filtered.drop(columns='Income'), train_filtered['Income']) test["prediction"] = rf.predict(test) rates = test.groupby("Gender")["prediction"].sum() / test.groupby("Gender")["prediction"].size() test.drop(columns='prediction', inplace=True) return rates[0] / rates[1] ``` 3. Use the function `fmin` to minimize the objective function. ``` python from boexplain import fmin train_filtered = fmin( data=train, f=obj, columns=["Age", "Education-Num"], runtime=30, ) ``` <!-- which returns a predicate 28 <= Age <= 59 and 6 <= Education-Num <= 16. Removing the tuples satisfying the returned predicate reduces the ratio from 3.54 to 2.7. --> ## Reproduce the Experiments To reproduce the experiments, you can clone the repo and create a poetry environment (install [Poetry](https://python-poetry.org/docs/#installation)). Run ```bash poetry install ``` To setup the poetry environment a for jupyter notebook, run ```bash poetry run ipython kernel install --name=boexplain ``` An ipython kernel has been created for this environemnt. ### Adult Experiment To reproduce the results of the Adult experiment and recreate Figure 6, follow the instruction in [adult.ipynb](https://github.com/sfu-db/BOExplain/blob/main/adult.ipynb). ### Credit Experiment To reproduce the results of the Credit experiment and recreate Figure 8, follow the instruction in [credit.ipynb](https://github.com/sfu-db/BOExplain/blob/main/credit.ipynb). ### House Experiment To reproduce the results of the House experiment and recreate Figure 7, follow the instruction in [house.ipynb](https://github.com/sfu-db/BOExplain/blob/main/house.ipynb). ### Scorpion Synthetic Data Experiment To reproduce the results of the experiment with Scorpion's synthetic data and corresponding query, and recreate Figure 4, follow the instruction in [scorpion.ipynb](https://github.com/sfu-db/BOExplain/blob/main/scorpion.ipynb).


نیازمندی

مقدار نام
==1.2.1 pandas
==1.20.0 numpy
==1.6.0 scipy
==0.24.1 scikit-learn
==4.1.0 altair
==0.0 imblearn
==4.51.0 tqdm
==4.4.0 colorlog
==0.3.0 numpyencoder


زبان مورد نیاز

مقدار نام
>=3.9,<4.0 Python


نحوه نصب


نصب پکیج whl boexplain-0.1.1:

    pip install boexplain-0.1.1.whl


نصب پکیج tar.gz boexplain-0.1.1:

    pip install boexplain-0.1.1.tar.gz