معرفی شرکت ها


bob.paper.CVPRW_2016-1.0.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Running the experiments as given in paper: "Heterogeneous Face Recognition using Inter-Session Variability Modelling".
ویژگی مقدار
سیستم عامل -
نام فایل bob.paper.CVPRW_2016-1.0.2
نام bob.paper.CVPRW_2016
نسخه کتابخانه 1.0.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Tiago de Freitas Pereira
ایمیل نویسنده tiago.pereira@idiap.ch
آدرس صفحه اصلی http://gitlab.idiap.ch/
آدرس اینترنتی https://pypi.org/project/bob.paper.CVPRW_2016/
مجوز BSD
.. image:: https://gitlab.idiap.ch/biometric/bob.paper.CVPRW_2016/badges/master/build.svg? :target: https://gitlab.idiap.ch/biometric/bob.paper.CVPRW_2016/commits/master .. image:: http://img.shields.io/badge/docs-stable-yellow.png :target: http://pythonhosted.org/bob.paper.CVPRW_2016/index.html .. image:: https://img.shields.io/badge/github-master-0000c0.png :target: https://gitlab.idiap.ch/tiago.pereira/CVPRW_2016/tree/master .. image:: http://img.shields.io/pypi/v/bob.paper.CVPRW_2016.png :target: https://pypi.python.org/pypi/bob.paper.CVPRW_2016 .. image:: https://img.shields.io/badge/original-data--files-a000a0.png :target: http://www.cbsr.ia.ac.cn/english/NIR-VIS-2.0-Database.html .. image:: https://img.shields.io/badge/original-data--files-a000a0.png :target: http://mmlab.ie.cuhk.edu.hk/archive/facesketch.html ======================================================================== Heterogeneous Face Recognition using Inter-Session Variability Modelling ======================================================================== This package provides the source code to run the experiments published in the paper `Heterogeneous Face Recognition using Inter-Session Variability Modelling <http://publications.idiap.ch/index.php/publications/show/3370>`_. If you use this package and/or its results, please cite the following publications: 1. The original paper with the counter-measure explained in details:: @inproceedings{Pereira_CVPRW2016, author = {Pereira, Tiago de Freitas and Marcel, S{\'{e}}bastien}, keywords = {Face Recognition, Session Variability Modelling, Heterogeneous Face Recognition}, month = jun, year = {2016}, title = {Heterogeneous Face Recognition using Inter-Session Variability Modelling}, journal = {IEEE Computer Society Workshop on Biometrics - CVPRW 2016}, } 2. Bob as the core framework used to run the experiments:: @inproceedings{Anjos_ACMMM_2012, author = {A. Anjos AND L. El Shafey AND R. Wallace AND M. G\"unther AND C. McCool AND S. Marcel}, title = {Bob: a free signal processing and machine learning toolbox for researchers}, year = {2012}, month = oct, booktitle = {20th ACM Conference on Multimedia Systems (ACMMM), Nara, Japan}, publisher = {ACM Press}, } Raw Data -------- This package does not provide the dataset used in the paper. They must be downloaded separately from CUHK_CUFS (`<http://mmlab.ie.cuhk.edu.hk/archive/facesketch.html>`_) and CBSR NIR-VIS-2.0 (`<http://www.cbsr.ia.ac.cn/english/NIR-VIS-2.0-Database.html>`_). Installation ------------ .. note:: If you are reading this page through our GitHub portal and not through PyPI, note **the development tip of the package may not be stable** or become unstable in a matter of moments. Go to `http://pypi.python.org/pypi/antispoofing.lbptop <http://pypi.python.org/pypi/bob.paper.CVPRW_2016>`_ to download the latest stable version of this package. There are 2 options you can follow to get this package installed and operational on your computer: you can use automatic installers like `pip <http://pypi.python.org/pypi/pip/>`_ (or `easy_install <http://pypi.python.org/pypi/setuptools>`_) or manually download, unpack and use `zc.buildout <http://pypi.python.org/pypi/zc.buildout>`_ to create a virtual work environment just for this package. Using an automatic installer ============================ Using ``pip`` is the easiest (shell commands are marked with a ``$`` signal):: $ pip install bob.paper.CVPRW_2016 You can also do the same with ``easy_install``:: $ easy_install bob.paper.CVPRW_2016 This will download and install this package plus any other required dependencies. It will also verify if the version of Bob you have installed is compatible. This scheme works well with virtual environments by `virtualenv <http://pypi.python.org/pypi/virtualenv>`_ or if you have root access to your machine. Otherwise, we recommend you use the next option. Using ``zc.buildout`` ===================== Download the latest version of this package from `PyPI <http://pypi.python.org/pypi/bob.paper.CVPRW_2016>`_ and unpack it in your working area. The installation of the toolkit itself uses `buildout <http://www.buildout.org/>`_. You don't need to understand its inner workings to use this package. Here is a recipe to get you started:: $ python bootstrap.py $ ./bin/buildout Reproducibility --------------- Please, check our documentation in order to reproduce the results of the paper. .. _Bob: http://idiap.github.io/bob/ .. _virtualbox: http://www.virtualbox.org .. _bob_bio: https://pypi.python.org/pypi/bob.bio.gmm/


نحوه نصب


نصب پکیج whl bob.paper.CVPRW_2016-1.0.2:

    pip install bob.paper.CVPRW_2016-1.0.2.whl


نصب پکیج tar.gz bob.paper.CVPRW_2016-1.0.2:

    pip install bob.paper.CVPRW_2016-1.0.2.tar.gz