<img align="left" height="70" src="bnlp.svg" alt="bnlp"/>
# Bengali Natural Language Processing(BNLP)
[](https://travis-ci.org/sagorbrur/bnlp)
[](https://pypi.org/project/bnlp-toolkit/)
[](https://github.com/sagorbrur/bnlp/releases/tag/2.0.0)
[](https://pypi.org/project/bnlp-toolkit/)
[](https://bnlp.readthedocs.io/en/latest/?badge=latest)
[](https://gitter.im/bnlp_toolkit/community?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge)
BNLP is a natural language processing toolkit for Bengali Language. This tool will help you to **tokenize Bengali text**, **Embedding Bengali words**, **Bengali POS Tagging**, **Bengali Name Entity Recognition**, **Construct Neural Model** for Bengali NLP purposes.
## Installation
### PIP installer(Python: 3.6, 3.7, 3.8 tested okay, OS: linux, windows tested okay )
```
pip install bnlp_toolkit
```
**or Upgrade**
```
pip install -U bnlp_toolkit
```
## Pretrained Model
### Download Link
* [Bengali SentencePiece](https://github.com/sagorbrur/bnlp/tree/master/model)
* [Bengali Word2Vec](https://drive.google.com/file/d/1cQ8AoSdiX5ATYOzcTjCqpLCV1efB9QzT/view?usp=sharing)
* [Bengali FastText](https://drive.google.com/open?id=1CFA-SluRyz3s5gmGScsFUcs7AjLfscm2)
* [Bengali GloVe Wordvectors](https://github.com/sagorbrur/GloVe-Bengali)
* [Bengali POS Tag model](https://github.com/sagorbrur/bnlp/blob/master/model/bn_pos.pkl)
* [Bengali NER model](https://github.com/sagorbrur/bnlp/blob/master/model/bn_ner.pkl)
### Training Details
* Sentencepiece, Word2Vec, Fasttext, GloVe model trained with **Bengali Wikipedia Dump Dataset**
- [Bengali Wiki Dump](https://dumps.wikimedia.org/bnwiki/latest/)
* SentencePiece Training Vocab Size=50000
* Fasttext trained with total words = 20M, vocab size = 1171011, epoch=50, embedding dimension = 300 and the training loss = 0.318668,
* Word2Vec word embedding dimension = 100, min_count=5, window=5, epochs=10
* To Know Bengali GloVe Wordvector and training process follow [this](https://github.com/sagorbrur/GloVe-Bengali) repository
* Bengali CRF POS Tagging was training with [nltr](https://github.com/abhishekgupta92/bangla_pos_tagger/tree/master/data) dataset with 80% accuracy.
* Bengali CRF NER Tagging was train with [this](https://github.com/MISabic/NER-Bangla-Dataset) data with 90% accuracy.
## Tokenization
* **Basic Tokenizer**
```py
from bnlp import BasicTokenizer
basic_tokenizer = BasicTokenizer()
raw_text = "আমি বাংলায় গান গাই।"
tokens = basic_tokenizer.tokenize(raw_text)
print(tokens)
# output: ["আমি", "বাংলায়", "গান", "গাই", "।"]
```
* **NLTK Tokenization**
```py
from bnlp import NLTKTokenizer
bnltk = NLTKTokenizer()
text = "আমি ভাত খাই। সে বাজারে যায়। তিনি কি সত্যিই ভালো মানুষ?"
word_tokens = bnltk.word_tokenize(text)
sentence_tokens = bnltk.sentence_tokenize(text)
print(word_tokens)
print(sentence_tokens)
# output
# word_token: ["আমি", "ভাত", "খাই", "।", "সে", "বাজারে", "যায়", "।", "তিনি", "কি", "সত্যিই", "ভালো", "মানুষ", "?"]
# sentence_token: ["আমি ভাত খাই।", "সে বাজারে যায়।", "তিনি কি সত্যিই ভালো মানুষ?"]
```
* **Bengali SentencePiece Tokenization**
- tokenization using trained model
```py
from bnlp import SentencepieceTokenizer
bsp = SentencepieceTokenizer()
model_path = "./model/bn_spm.model"
input_text = "আমি ভাত খাই। সে বাজারে যায়।"
tokens = bsp.tokenize(model_path, input_text)
print(tokens)
text2id = bsp.text2id(model_path, input_text)
print(text2id)
id2text = bsp.id2text(model_path, text2id)
print(id2text)
```
- Training SentencePiece
```py
from bnlp import SentencepieceTokenizer
bsp = SentencepieceTokenizer()
data = "raw_text.txt"
model_prefix = "test"
vocab_size = 5
bsp.train(data, model_prefix, vocab_size)
```
## Word Embedding
* **Bengali Word2Vec**
- Generate Vector using pretrain model
```py
from bnlp import BengaliWord2Vec
bwv = BengaliWord2Vec()
model_path = "bengali_word2vec.model"
word = 'গ্রাম'
vector = bwv.generate_word_vector(model_path, word)
print(vector.shape)
print(vector)
```
- Find Most Similar Word Using Pretrained Model
```py
from bnlp import BengaliWord2Vec
bwv = BengaliWord2Vec()
model_path = "bengali_word2vec.model"
word = 'গ্রাম'
similar = bwv.most_similar(model_path, word, topn=10)
print(similar)
```
- Train Bengali Word2Vec with your own data
Train Bengali word2vec with your custom raw data or tokenized sentences.
custom tokenized sentence format example:
```
sentences = [['আমি', 'ভাত', 'খাই', '।'], ['সে', 'বাজারে', 'যায়', '।']]
```
Check [gensim word2vec api](https://radimrehurek.com/gensim/models/word2vec.html#gensim.models.word2vec.Word2Vec) for details of training parameter
```py
from bnlp import BengaliWord2Vec
bwv = BengaliWord2Vec()
data_file = "raw_text.txt" # or you can pass custom sentence tokens as list of list
model_name = "test_model.model"
vector_name = "test_vector.vector"
bwv.train(data_file, model_name, vector_name, epochs=5)
```
- Pre-train or resume word2vec training with same or new corpus or tokenized sentences
Check [gensim word2vec api](https://radimrehurek.com/gensim/models/word2vec.html#gensim.models.word2vec.Word2Vec) for details of training parameter
```py
from bnlp import BengaliWord2Vec
bwv = BengaliWord2Vec()
trained_model_path = "mytrained_model.model"
data_file = "raw_text.txt"
model_name = "test_model.model"
vector_name = "test_vector.vector"
bwv.pretrain(trained_model_path, data_file, model_name, vector_name, epochs=5)
```
* **Bengali FastText**
To use `fasttext` you need to install fasttext manually by `pip install fasttext==0.9.2`
NB: `fasttext` may not be worked in `windows`, it will only work in `linux`
- Generate Vector Using Pretrained Model
```py
from bnlp.embedding.fasttext import BengaliFasttext
bft = BengaliFasttext()
word = "গ্রাম"
model_path = "bengali_fasttext_wiki.bin"
word_vector = bft.generate_word_vector(model_path, word)
print(word_vector.shape)
print(word_vector)
```
- Train Bengali FastText Model
Check [fasttext documentation](https://fasttext.cc/docs/en/options.html) for details of training parameter
```py
from bnlp.embedding.fasttext import BengaliFasttext
bft = BengaliFasttext()
data = "raw_text.txt"
model_name = "saved_model.bin"
epoch = 50
bft.train(data, model_name, epoch)
```
- Generate Vector File from Fasttext Binary Model
```py
from bnlp.embedding.fasttext import BengaliFasttext
bft = BengaliFasttext()
model_path = "mymodel.bin"
out_vector_name = "myvector.txt"
bft.bin2vec(model_path, out_vector_name)
```
* **Bengali GloVe Word Vectors**
We trained glove model with bengali data(wiki+news articles) and published bengali glove word vectors</br>
You can download and use it on your different machine learning purposes.
```py
from bnlp import BengaliGlove
glove_path = "bn_glove.39M.100d.txt"
word = "গ্রাম"
bng = BengaliGlove()
res = bng.closest_word(glove_path, word)
print(res)
vec = bng.word2vec(glove_path, word)
print(vec)
```
## Bengali POS Tagging
* **Bengali CRF POS Tagging**
- Find Pos Tag Using Pretrained Model
```py
from bnlp import POS
bn_pos = POS()
model_path = "model/bn_pos.pkl"
text = "আমি ভাত খাই।" # or you can pass ['আমি', 'ভাত', 'খাই', '।']
res = bn_pos.tag(model_path, text)
print(res)
# [('আমি', 'PPR'), ('ভাত', 'NC'), ('খাই', 'VM'), ('।', 'PU')]
```
- Train POS Tag Model
```py
from bnlp import POS
bn_pos = POS()
model_name = "pos_model.pkl"
train_data = [[('রপ্তানি', 'JJ'), ('দ্রব্য', 'NC'), ('-', 'PU'), ('তাজা', 'JJ'), ('ও', 'CCD'), ('শুকনা', 'JJ'), ('ফল', 'NC'), (',', 'PU'), ('আফিম', 'NC'), (',', 'PU'), ('পশুচর্ম', 'NC'), ('ও', 'CCD'), ('পশম', 'NC'), ('এবং', 'CCD'),('কার্পেট', 'NC'), ('৷', 'PU')], [('মাটি', 'NC'), ('থেকে', 'PP'), ('বড়জোর', 'JQ'), ('চার', 'JQ'), ('পাঁচ', 'JQ'), ('ফুট', 'CCL'), ('উঁচু', 'JJ'), ('হবে', 'VM'), ('৷', 'PU')]]
test_data = [[('রপ্তানি', 'JJ'), ('দ্রব্য', 'NC'), ('-', 'PU'), ('তাজা', 'JJ'), ('ও', 'CCD'), ('শুকনা', 'JJ'), ('ফল', 'NC'), (',', 'PU'), ('আফিম', 'NC'), (',', 'PU'), ('পশুচর্ম', 'NC'), ('ও', 'CCD'), ('পশম', 'NC'), ('এবং', 'CCD'),('কার্পেট', 'NC'), ('৷', 'PU')], [('মাটি', 'NC'), ('থেকে', 'PP'), ('বড়জোর', 'JQ'), ('চার', 'JQ'), ('পাঁচ', 'JQ'), ('ফুট', 'CCL'), ('উঁচু', 'JJ'), ('হবে', 'VM'), ('৷', 'PU')]]
bn_pos.train(model_name, train_data, test_data)
```
## Bengali NER
* **Bengali CRF NER**
- Find NER Tag Using Pretrained Model
```py
from bnlp import NER
bn_ner = NER()
model_path = "model/bn_ner.pkl"
text = "সে ঢাকায় থাকে।" # or you can pass ['সে', 'ঢাকায়', 'থাকে', '।']
result = bn_ner.tag(model_path, text)
print(result)
# [('সে', 'O'), ('ঢাকায়', 'S-LOC'), ('থাকে', 'O')]
```
- Train NER Tag Model
```py
from bnlp import NER
bn_ner = NER()
model_name = "ner_model.pkl"
train_data = [[('ত্রাণ', 'O'),('ও', 'O'),('সমাজকল্যাণ', 'O'),('সম্পাদক', 'S-PER'),('সুজিত', 'B-PER'),('রায়', 'I-PER'),('নন্দী', 'E-PER'),('প্রমুখ', 'O'),('সংবাদ', 'O'),('সম্মেলনে', 'O'),('উপস্থিত', 'O'),('ছিলেন', 'O')], [('ত্রাণ', 'O'),('ও', 'O'),('সমাজকল্যাণ', 'O'),('সম্পাদক', 'S-PER'),('সুজিত', 'B-PER'),('রায়', 'I-PER'),('নন্দী', 'E-PER'),('প্রমুখ', 'O'),('সংবাদ', 'O'),('সম্মেলনে', 'O'),('উপস্থিত', 'O'),('ছিলেন', 'O')], [('ত্রাণ', 'O'),('ও', 'O'),('সমাজকল্যাণ', 'O'),('সম্পাদক', 'S-PER'),('সুজিত', 'B-PER'),('রায়', 'I-PER'),('নন্দী', 'E-PER'),('প্রমুখ', 'O'),('সংবাদ', 'O'),('সম্মেলনে', 'O'),('উপস্থিত', 'O'),('ছিলেন', 'O')]]
test_data = [[('ত্রাণ', 'O'),('ও', 'O'),('সমাজকল্যাণ', 'O'),('সম্পাদক', 'S-PER'),('সুজিত', 'B-PER'),('রায়', 'I-PER'),('নন্দী', 'E-PER'),('প্রমুখ', 'O'),('সংবাদ', 'O'),('সম্মেলনে', 'O'),('উপস্থিত', 'O'),('ছিলেন', 'O')], [('ত্রাণ', 'O'),('ও', 'O'),('সমাজকল্যাণ', 'O'),('সম্পাদক', 'S-PER'),('সুজিত', 'B-PER'),('রায়', 'I-PER'),('নন্দী', 'E-PER'),('প্রমুখ', 'O'),('সংবাদ', 'O'),('সম্মেলনে', 'O'),('উপস্থিত', 'O'),('ছিলেন', 'O')], [('ত্রাণ', 'O'),('ও', 'O'),('সমাজকল্যাণ', 'O'),('সম্পাদক', 'S-PER'),('সুজিত', 'B-PER'),('রায়', 'I-PER'),('নন্দী', 'E-PER'),('প্রমুখ', 'O'),('সংবাদ', 'O'),('সম্মেলনে', 'O'),('উপস্থিত', 'O'),('ছিলেন', 'O')]]
bn_ner.train(model_name, train_data, test_data)
```
## Bengali Corpus Class
* Stopwords and Punctuations
```py
from bnlp.corpus import stopwords, punctuations, letters, digits
print(stopwords)
print(punctuations)
print(letters)
print(digits)
```
* Remove stopwords from Text
```py
from bnlp.corpus import stopwords
from bnlp.corpus.util import remove_stopwords
raw_text = 'আমি ভাত খাই।'
result = remove_stopwords(raw_text, stopwords)
print(result)
# ['ভাত', 'খাই', '।']
```
## Contributor Guide
Check [CONTRIBUTING.md](https://github.com/sagorbrur/bnlp/blob/master/CONTRIBUTING.md) page for details.
## Thanks To
* [Semantics Lab]()
### Extra Contributor
* [Mehadi Hasan Menon](https://github.com/menon92)
* [Kazal Chandra Barman](https://github.com/kazalbrur)