معرفی شرکت ها


bnlearn-0.7.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Python package for learning the graphical structure of Bayesian networks, parameter learning, inference and sampling methods.
ویژگی مقدار
سیستم عامل -
نام فایل bnlearn-0.7.9
نام bnlearn
نسخه کتابخانه 0.7.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Erdogan Taskesen
ایمیل نویسنده erdogant@gmail.com
آدرس صفحه اصلی https://erdogant.github.io/bnlearn
آدرس اینترنتی https://pypi.org/project/bnlearn/
مجوز -
# bnlearn - Library for Bayesian network learning and inference [![Python](https://img.shields.io/pypi/pyversions/bnlearn)](https://img.shields.io/pypi/pyversions/bnlearn) [![PyPI Version](https://img.shields.io/pypi/v/bnlearn)](https://pypi.org/project/bnlearn/) ![GitHub Repo stars](https://img.shields.io/github/stars/erdogant/bnlearn) [![License](https://img.shields.io/badge/license-MIT-green.svg)](https://github.com/erdogant/bnlearn/blob/master/LICENSE) [![Forks](https://img.shields.io/github/forks/erdogant/bnlearn.svg)](https://github.com/erdogant/bnlearn/network) [![Open Issues](https://img.shields.io/github/issues/erdogant/bnlearn.svg)](https://github.com/erdogant/bnlearn/issues) [![Project Status](http://www.repostatus.org/badges/latest/active.svg)](http://www.repostatus.org/#active) [![Downloads](https://pepy.tech/badge/bnlearn/month)](https://pepy.tech/project/bnlearn/) [![Downloads](https://pepy.tech/badge/bnlearn)](https://pepy.tech/project/bnlearn) [![DOI](https://zenodo.org/badge/231263493.svg)](https://zenodo.org/badge/latestdoi/231263493) [![Docs](https://img.shields.io/badge/Sphinx-Docs-Green)](https://erdogant.github.io/bnlearn/) [![Medium](https://img.shields.io/badge/Medium-Blog-black)](https://erdogant.github.io/bnlearn/pages/html/Documentation.html#medium-blog) ![GitHub repo size](https://img.shields.io/github/repo-size/erdogant/bnlearn) [![Donate](https://img.shields.io/badge/Support%20this%20project-grey.svg?logo=github%20sponsors)](https://erdogant.github.io/bnlearn/pages/html/Documentation.html#) [![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://erdogant.github.io/bnlearn/pages/html/Documentation.html#colab-notebook) <!---[![BuyMeCoffee](https://img.shields.io/badge/buymea-coffee-yellow.svg)](https://www.buymeacoffee.com/erdogant)--> <!---[![Coffee](https://img.shields.io/badge/coffee-black-grey.svg)](https://erdogant.github.io/donate/?currency=USD&amount=5)--> ### ``bnlearn`` is Python package for learning the graphical structure of Bayesian networks, parameter learning, inference and sampling methods. Because probabilistic graphical models can be difficult in usage, Bnlearn for python (this package) is build on the <a href="https://github.com/pgmpy/pgmpy">pgmpy</a> package and contains the most-wanted pipelines. Navigate to [API documentations](https://erdogant.github.io/bnlearn/) for more detailed information. # **⭐️ Star this repo if you like it ⭐️** # ### Blogs Read the blogs to get a structured overview of bayesian methods and detailed usage of ``bnlearn``. * [Step-by-step guide for structure learning.](https://towardsdatascience.com/a-step-by-step-guide-in-detecting-causal-relationships-using-bayesian-structure-learning-in-python-c20c6b31cee5) * [Step-by-step guide for knowledge-driven models.](https://towardsdatascience.com/a-step-by-step-guide-in-designing-knowledge-driven-models-using-bayesian-theorem-7433f6fd64be) # ### [Documentation pages](https://erdogant.github.io/bnlearn/) On the [documentation pages](https://erdogant.github.io/bnlearn/) you can find detailed information about the working of the ``bnlearn`` with many examples. # ### Installation ##### It is advisable to create a new environment (e.g. with Conda). ```bash conda create -n env_bnlearn python=3.8 conda activate env_bnlearn ``` ##### Install bnlearn from PyPI ```bash pip install bnlearn ``` ##### Install bnlearn from github source ```bash pip install git+https://github.com/erdogant/bnlearn ``` ##### The following functions are available after installation: ```python # Import library import bnlearn as bn # Structure learning bn.structure_learning.fit() # Compute edge strength with the test statistic bn.independence_test(model, df, test='chi_square', prune=True) # Parameter learning bn.parameter_learning.fit() # Inference bn.inference.fit() # Make predictions bn.predict() # Based on a DAG, you can sample the number of samples you want. bn.sampling() # Load well known examples to play arround with or load your own .bif file. bn.import_DAG() # Load simple dataframe of sprinkler dataset. bn.import_example() # Compare 2 graphs bn.compare_networks() # Plot graph bn.plot() # To make the directed grapyh undirected bn.to_undirected() # Convert to one-hot datamatrix bn.df2onehot() # Derive the topological ordering of the (entire) graph bn.topological_sort() # See below for the exact working of the functions ``` ##### The following methods are also included: * inference * sampling * comparing two networks * loading bif files * conversion of directed to undirected graphs # ### Method overview Learning a Bayesian network can be split into the underneath problems which are all implemented in this package: * **Structure learning**: Given the data: Estimate a DAG that captures the dependencies between the variables. * There are multiple manners to perform structure learning. * Exhaustivesearch * Hillclimbsearch * NaiveBayes * TreeSearch * Chow-liu * Tree-augmented Naive Bayes (TAN) * **Parameter learning**: Given the data and DAG: Estimate the (conditional) probability distributions of the individual variables. * **Inference**: Given the learned model: Determine the exact probability values for your queries. # ### Examples A structured overview of all examples are now available on the [documentation pages](https://erdogant.github.io/bnlearn/). ##### Structure learning * [Example: Learn structure on the Sprinkler dataset based on a simple dataframe](https://erdogant.github.io/bnlearn/pages/html/Examples.html#example-1) * [Example: Comparison method and scoring types types for structure learning](https://erdogant.github.io/bnlearn/pages/html/Examples.html#example-2) * [Example: Learn structure on more complex dataset (Asia)](https://erdogant.github.io/bnlearn/pages/html/Examples.html#example-3) ##### Parameter learning * [Example: Parameter learning using a DAG and dataframe](https://erdogant.github.io/bnlearn/pages/html/Examples.html#parameter-learning) ##### Inferences * [Example: Make predictions on a dataframe using inference](https://erdogant.github.io/bnlearn/pages/html/Predict.html) ##### Sampling * [Example: Sampling to create datasets](https://erdogant.github.io/bnlearn/pages/html/Sampling%20and%20datasets.html) ##### Complete examples * [Example: Create a Bayesian Network, learn its parameters from data and perform the inference](https://erdogant.github.io/bnlearn/pages/html/Examples.html#create-a-bayesian-network-learn-its-parameters-from-data-and-perform-the-inference) * [Example: Use case in the medical domain](https://erdogant.github.io/bnlearn/pages/html/UseCases.html) * [Example: Use case Titanic](https://erdogant.github.io/bnlearn/pages/html/UseCases.html#) ##### Plotting * [Example: Interactive plotting](https://erdogant.github.io/bnlearn/pages/html/Plot.html#) * [Example: Static plotting](https://erdogant.github.io/bnlearn/pages/html/Plot.html#static-plot) * [Example: Comparison of two networks](https://erdogant.github.io/bnlearn/pages/html/Plot.html#comparison-of-two-networks) ##### Various * [Example: Saving and loading of bnlearn models](https://erdogant.github.io/bnlearn/pages/html/saving%20and%20loading.html) * [Example: Data conversions such as creating sparse datamatrix from source-target and weights](https://erdogant.github.io/bnlearn/pages/html/dataframe%20conversions.html?highlight=target#) * [Example: Load DAG from BIF files](https://erdogant.github.io/bnlearn/pages/html/Examples.html?highlight=comparison#import-from-bif) # ### Various basic examples ```python import bnlearn as bn # Example dataframe sprinkler_data.csv can be loaded with: df = bn.import_example() # df = pd.read_csv('sprinkler_data.csv') ``` ##### df looks like this ```python Cloudy Sprinkler Rain Wet_Grass 0 0 1 0 1 1 1 1 1 1 2 1 0 1 1 3 0 0 1 1 4 1 0 1 1 .. ... ... ... ... 995 0 0 0 0 996 1 0 0 0 997 0 0 1 0 998 1 1 0 1 999 1 0 1 1 ``` ```python model = bn.structure_learning.fit(df) # Compute edge strength with the chi_square test statistic model = bn.independence_test(model, df) G = bn.plot(model) ``` <p align="center"> <img src="https://github.com/erdogant/bnlearn/blob/master/docs/figs/fig_sprinkler_sl.png" width="600" /> </p> * Choosing various methodtypes and scoringtypes: ```python model_hc_bic = bn.structure_learning.fit(df, methodtype='hc', scoretype='bic') model_hc_k2 = bn.structure_learning.fit(df, methodtype='hc', scoretype='k2') model_hc_bdeu = bn.structure_learning.fit(df, methodtype='hc', scoretype='bdeu') model_ex_bic = bn.structure_learning.fit(df, methodtype='ex', scoretype='bic') model_ex_k2 = bn.structure_learning.fit(df, methodtype='ex', scoretype='k2') model_ex_bdeu = bn.structure_learning.fit(df, methodtype='ex', scoretype='bdeu') model_cl = bn.structure_learning.fit(df, methodtype='cl', root_node='Wet_Grass') model_tan = bn.structure_learning.fit(df, methodtype='tan', root_node='Wet_Grass', class_node='Rain') ``` ## Example: Parameter Learning ```python import bnlearn as bn # Import dataframe df = bn.import_example() # As an example we set the CPD at False which returns an "empty" DAG model = bn.import_DAG('sprinkler', CPD=False) # Now we learn the parameters of the DAG using the df model_update = bn.parameter_learning.fit(model, df) # Make plot G = bn.plot(model_update) ``` ## Example: Inference ```python import bnlearn as bn model = bn.import_DAG('sprinkler') query = bn.inference.fit(model, variables=['Rain'], evidence={'Cloudy':1,'Sprinkler':0, 'Wet_Grass':1}) print(query) print(query.df) # Lets try another inference query = bn.inference.fit(model, variables=['Rain'], evidence={'Cloudy':1}) print(query) print(query.df) ``` <hr> ### References * https://erdogant.github.io/bnlearn/ * http://pgmpy.org * https://programtalk.com/python-examples/pgmpy.factors.discrete.TabularCPD/ * http://www.bnlearn.com/bnrepository/ ### Contributors Setting up and maintaining bnlearn has been possible thanks to users and contributors. Thanks to: <p align="left"> <a href="https://github.com/erdogant/bnlearn/graphs/contributors"> <img src="https://contrib.rocks/image?repo=erdogant/bnlearn" /> </a> </p> ### Citation Please cite ``bnlearn`` in your publications if this is useful for your research. See column right for citation information. ### Maintainer * Erdogan Taskesen, github: [erdogant](https://github.com/erdogant) * Contributions are welcome. * If you wish to buy me a <a href="https://erdogant.github.io/donate/?currency=USD&amount=5">Coffee</a> for this work, it is very appreciated :)


نیازمندی

مقدار نام
>=0.1.18 pgmpy
>=2.7.1 networkx
>=3.3.4 matplotlib
>=1.24.1 numpy
- pandas
- tqdm
- ismember
- scikit-learn
- funcsigs
- statsmodels
- python-louvain
- packaging
- df2onehot
- fsspec
- pypickle
- tabulate
- ipywidgets
- pyvis
- requests


زبان مورد نیاز

مقدار نام
>=3 Python


نحوه نصب


نصب پکیج whl bnlearn-0.7.9:

    pip install bnlearn-0.7.9.whl


نصب پکیج tar.gz bnlearn-0.7.9:

    pip install bnlearn-0.7.9.tar.gz