معرفی شرکت ها


bmi-geotiff-0.3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Access data and metadata in a GeoTIFF file through an API or a BMI
ویژگی مقدار
سیستم عامل -
نام فایل bmi-geotiff-0.3
نام bmi-geotiff
نسخه کتابخانه 0.3
نگهدارنده []
ایمیل نگهدارنده []
نویسنده -
ایمیل نویسنده Mark Piper <mark.piper@colorado.edu>
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/bmi-geotiff/
مجوز MIT License
[![Basic Model Interface](https://img.shields.io/badge/CSDMS-Basic%20Model%20Interface-green.svg)](https://bmi.readthedocs.io/) [![PyPI](https://img.shields.io/pypi/v/bmi-geotiff)](https://pypi.org/project/bmi-geotiff) [![Conda Version](https://img.shields.io/conda/vn/conda-forge/bmi-geotiff.svg)](https://anaconda.org/conda-forge/bmi-geotiff) [![Build/Test CI](https://github.com/csdms/bmi-geotiff/actions/workflows/build-test-ci.yml/badge.svg)](https://github.com/csdms/bmi-geotiff/actions/workflows/build-test-ci.yml) [![Documentation Status](https://readthedocs.org/projects/bmi-geotiff/badge/?version=latest)](https://bmi-geotiff.readthedocs.io/en/latest/?badge=latest) # bmi-geotiff Access data (and metadata) from a GeoTIFF file through an API or a BMI. The *bmi-geotiff* library accepts a filepath or an URL to a GeoTIFF file. Data are loaded into an [xarray](http://xarray.pydata.org/en/stable/) [DataArray](http://xarray.pydata.org/en/stable/api.html#dataarray) using the [rioxarray](https://corteva.github.io/rioxarray/stable/index.html) [open_rasterio](https://corteva.github.io/rioxarray/stable/rioxarray.html#rioxarray.open_rasterio) method. The API is wrapped with a [Basic Model Interface](https://bmi.readthedocs.io) (BMI), which provides a standard set of functions for coupling with data or models that also expose a BMI. More information on the BMI can found in its [documentation](https://bmi.readthedocs.io). ## Installation Install the latest stable release of *bmi-geotiff* with `pip`: ``` pip install bmi-geotiff ``` or with `conda`: ``` conda install -c conda-forge bmi-geotiff ``` Alternately, the *bmi-geotiff* library can be built and installed from source. The library uses several other open source libraries, so a convenient way of building and installing it is within a [conda environment](https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html). After cloning or downloading the *bmi-geotiff* [repository](https://github.com/csdms/bmi-geotiff), change into the repository directory and set up a conda environment with the included environment file: ``` conda env create --file environment.yml ``` Then build and install *bmi-geotiff* from source with ``` pip install -e . ``` ## Examples A brief example of using the *bmi-geotiff* API is given in the following steps. The example is derived from a [similar example](http://xarray.pydata.org/en/stable/examples/visualization_gallery.html#imshow()-and-rasterio-map-projections) in the xarray documentation. Start a Python session and import the `GeoTiff` class: ```python >>> from bmi_geotiff import GeoTiff ``` For convenience, let's use a test image from the [rasterio](https://rasterio.readthedocs.io) project: ```python >>> url = "https://github.com/rasterio/rasterio/raw/main/tests/data/RGB.byte.tif" ``` Make an instance of `GeoTiff` with this URL: ```python >>> g = GeoTiff(url) ``` This step might take a few moments as the data are pulled from GitHub. The data have been loaded into an xarray `DataArray`, which can be accessed through the `da` property: ```python >>> g.da <xarray.DataArray (band: 3, y: 718, x: 791)> [1703814 values with dtype=uint8] Coordinates: * band (band) int64 1 2 3 * x (x) float64 1.021e+05 1.024e+05 ... 3.389e+05 3.392e+05 * y (y) float64 2.827e+06 2.826e+06 ... 2.612e+06 2.612e+06 spatial_ref int64 0 Attributes: STATISTICS_MAXIMUM: 255 STATISTICS_MEAN: 29.947726688477 STATISTICS_MINIMUM: 0 STATISTICS_STDDEV: 52.340921626611 _FillValue: 0.0 scale_factor: 1.0 add_offset: 0.0 units: metre ``` Note that coordinate reference system information is stored in the `spatial_ref` non-dimensional coordinate: ```python >>> g.da.spatial_ref <xarray.DataArray 'spatial_ref' ()> array(0) Coordinates: spatial_ref int64 0 Attributes: crs_wkt: PROJCS["WGS 84 / UTM zone 18N",GEOGCS[... semi_major_axis: 6378137.0 semi_minor_axis: 6356752.314245179 inverse_flattening: 298.257223563 reference_ellipsoid_name: WGS 84 longitude_of_prime_meridian: 0.0 prime_meridian_name: Greenwich geographic_crs_name: WGS 84 horizontal_datum_name: World Geodetic System 1984 projected_crs_name: WGS 84 / UTM zone 18N grid_mapping_name: transverse_mercator latitude_of_projection_origin: 0.0 longitude_of_central_meridian: -75.0 false_easting: 500000.0 false_northing: 0.0 scale_factor_at_central_meridian: 0.9996 spatial_ref: PROJCS["WGS 84 / UTM zone 18N",GEOGCS[... GeoTransform: 101985.0 300.0379266750948 0.0 2826915... ``` Display the image with the [xarray.plot.imshow](http://xarray.pydata.org/en/stable/generated/xarray.plot.imshow.html) method. ```python >>> import matplotlib.pyplot as plt >>> g.da.plot.imshow() >>> plt.show() ``` ![Example GeoTiff display through *xarray*.](./examples/example-rgb.png) For examples with more detail, see the Jupyter Notebooks and Python scripts included in the [examples](https://github.com/csdms/bmi-geotiff/tree/main/examples) directory of the *bmi-geotiff* repository. Documentation for *bmi-geotiff* is available at https://bmi-geotiff.readthedocs.io. Credits ======= Project lead ------------ * Mark Piper Acknowledgments --------------- This work is supported by the National Science Foundation under Award No. [1831623](https://nsf.gov/awardsearch/showAward?AWD_ID=1831623), *Community Facility Support: The Community Surface Dynamics Modeling System (CSDMS)*. MIT License ----------- Copyright (c) 2021 Community Surface Dynamics Modeling System Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.


نیازمندی

مقدار نام
- numpy
- pyyaml
- xarray
- rasterio
- rioxarray
- bmipy
- cartopy
- matplotlib
- black
- flake8
>=5 isort
- pytest
- pytest-cov
- pytest-datadir
- coveralls


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl bmi-geotiff-0.3:

    pip install bmi-geotiff-0.3.whl


نصب پکیج tar.gz bmi-geotiff-0.3:

    pip install bmi-geotiff-0.3.tar.gz