معرفی شرکت ها


blurhash-numba-0.0.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Numba aware BlurHash encoder and decoder implementation for Python
ویژگی مقدار
سیستم عامل -
نام فایل blurhash-numba-0.0.1
نام blurhash-numba
نسخه کتابخانه 0.0.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Ankit Mahato
ایمیل نویسنده ankit@realworldpython.guide
آدرس صفحه اصلی https://realworldpython.guide/blurhash-numba/
آدرس اینترنتی https://pypi.org/project/blurhash-numba/
مجوز -
<p align="center"> <img src="https://raw.githubusercontent.com/animator/blurhash-numba/master/media/logo-text.png" alt="Blurhash numba logo"> </p> # blurhash-numba : The fastest Python 3 BlurHash implementation *powered by* numba [![Build Status](https://travis-ci.com/animator/blurhash-numba.svg?branch=master)](https://travis-ci.com/animator/blurhash-numba) ## What is BlurHash? BlurHash is a compact representation of a placeholder for an image. <img src="https://raw.githubusercontent.com/animator/blurhash-numba/master/media/WhyBlurHash.png" width="600"> BlurHash encoder consumes an image, and provides a short string (only 20-30 characters!) that represents the placeholder for the image. You perform this on the backend of your service, and store the string along with the image. When you send data to any client, you send both the URL to the image, and the BlurHash string. Your client then takes the string, and decodes it into an image that it shows while the real image is loading over the network. The string is short enough that it comfortably fits into whatever data format you use. For instance, it can easily be added as a field in a JSON object. In summary: <img src="https://raw.githubusercontent.com/animator/blurhash-numba/master/media/HowItWorks1.jpg" width="250">&nbsp;&nbsp;&nbsp;<img src="https://raw.githubusercontent.com/animator/blurhash-numba/master/media/HowItWorks2.jpg" width="250"> Read more about the algorithm [here](https://github.com/woltapp/blurhash/blob/master/Algorithm.md). # Installation You can install `blurhash-numba` using pip3 ``` $ pip3 install blurhash-numba ``` You can also optionally install `Pillow` (PIL) along with `blurhash-numba` in case it is not already installed ``` $ pip3 install blurhash-numba[pillow] ``` # Usage ## Encoding As `blurhash_numba.encode` accepts the image in the form of a `numpy` array. You can convert an image file using the `Pillow` python library. ```python from blurhash_numba import encode from PIL import Image import numpy as np image = Image.open("256.jpg") ``` > `image` > <img src="https://raw.githubusercontent.com/animator/blurhash-numba/master/media/256.jpg" width="256"> ```python image_array = np.array(image.convert("RGB"), dtype=np.float) blurhash_code = encode(image_array, x_components = 4, y_components = 3) ``` > `blurhash_code` > `'LtL#LZR*x]jG.TRkoeayIUofM{R*'` `y_components` and `x_components` parameters adjust the amount of vertical and horizontal AC components in hashed image. Both parameters must be `>= 1` and `<= 9`. ## Decoding ```python from blurhash_numba import decode from PIL import Image import numpy as np blur_img = Image.fromarray(np.array(decode(blur_hash, 256, 256)).astype('uint8')) ``` > `blur_img` > <img src="https://raw.githubusercontent.com/animator/blurhash-numba/master/media/256-blur.jpg" width="256"> # Tests Run test suite with `pytest` in virtual environment ``` $ pytest ``` # FAQs ## Why should I use blurhash-numba? This is the fastest implementation of the BlurHash algorithm (both encoding & decoding) in Python currently as it uses `numba` to directly convert the Python+NumPy code into fast machine code. It is 30-70x faster than [halcy/blurhash-python](https://github.com/halcy/blurhash-python) and 2-4x faster than [woltapp/blurhash](https://github.com/woltapp/blurhash). ## How do I pick the number of X and Y components? It depends a bit on taste. The more components you pick, the more information is retained in the placeholder, but the longer the BlurHash string will be. Also, it doesn't always look good with too many components. We usually go with 4 by 3, which seems to strike a nice balance. However, you should adjust the number of components depending on the aspect ratio of your images. For instance, very wide images should have more X components and fewer Y components. ## What is the `punch` parameter in this implementations? It is a parameter that adjusts the contrast on the decoded image. 1 means normal, smaller values will make the effect more subtle, and larger values will make it stronger. This is basically a design parameter, which lets you adjust the look. Technically, what it does is scale the AC components up or down. # Credits This project is based on the pure python BlurHash implementation by [halcy/blurhash-python](https://github.com/halcy/blurhash-python). Also credit goes to the original implementation by [woltapp/blurhash](https://github.com/woltapp/blurhash).


نیازمندی

مقدار نام
>=0.51.0 numba
>=7.2.0 Pillow
- pytest
>=7.2.0 Pillow


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl blurhash-numba-0.0.1:

    pip install blurhash-numba-0.0.1.whl


نصب پکیج tar.gz blurhash-numba-0.0.1:

    pip install blurhash-numba-0.0.1.tar.gz