معرفی شرکت ها


blowtorch-0.5.4


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Intuitive training framework for PyTorch
ویژگی مقدار
سیستم عامل -
نام فایل blowtorch-0.5.4
نام blowtorch
نسخه کتابخانه 0.5.4
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Alexander Becker
ایمیل نویسنده -
آدرس صفحه اصلی https://github.com/alebeck/blowtorch
آدرس اینترنتی https://pypi.org/project/blowtorch/
مجوز -
# blowtorch Intuitive, high-level training framework for research and development. Abstracts away boilerplate normally associated with training and evaluating PyTorch models, without limiting flexibility. Blowtorch provides the following: * A way to specify training runs at a high level, while not giving up on fine-grained control over individual training parts * Automated checkpointing, logging and resuming of runs * A [sacred](https://github.com/IDSIA/sacred) inspired configuration management * Reproducibility by keeping track of configuration, code and random state of each run ## Installation Make sure you have `numpy` and `torch` installed, then install with pip: ```shell script pip install --upgrade blowtorch ``` ## Example ```python from torch.optim import Adam from torch.utils.data import DataLoader from torchvision.datasets import CIFAR10 from torchvision.transforms import ToTensor from torchvision.models import vgg16 from blowtorch import Run run = Run(random_seed=123) @run.train_step @run.validate_step def step(batch, model): x, y = batch y_hat = model(x) loss = (y - y_hat).square().mean() return loss # will be called when model has been moved to the desired device @run.configure_optimizers def configure_optimizers(model): return Adam(model.parameters()) train_loader = DataLoader(CIFAR10('.', train=True, download=True, transform=ToTensor())) val_loader = DataLoader(CIFAR10('.', train=False, download=True, transform=ToTensor())) run(vgg16(num_classes=10), train_loader, val_loader) ``` ## Configuration You can pass multiple configuration files in YAML format to your `Run`, e.g. ```python run = Run(config_files=['config/default.yaml']) ``` Configuration values can then be accessed via e.g. `run['model']['num_layers']`. Dotted notation is also supported, e.g. `run['model.num_layers']`. When executing your training script, individual configuration values can be overwritten as follows: ```shell script python train.py with model.num_layers=4 model.use_dropout=True ``` ## Run options `Run.run()` takes following options: * `model`: `torch.nn.Module` * `train_loader`: `torch.utils.data.DataLoader` * `val_loader`: `torch.utils.data.DataLoader` * `loggers`: `Optional[List[aurora.logging.BaseLogger]]` (List of loggers that subscribe to various logging events, see logging section) * `max_epochs`: `int` (default `1`) * `use_gpu`: `bool` (default `True`) * `gpu_id`: `int` (default `0`) * `resume_checkpoint`: `Optional[Union[str, pathlib.Path]]` (Path to checkpoint directory to resume training from, default `None`) * `save_path`: `Union[str, pathlib.Path]` (Path to directory that blowtorch will save logs and checkpoints to, default `'train_logs'`) * `run_name`: `Optional[str]` (Name associated with that run, will be randomly created if None, default `None`) * `optimize_metric`: `Optional[str]` (train metric that will be used for optimization, will pick the first returned one if None, default `None`) * `checkpoint_metric`: `Optional[str]` (validation metric that will be used for checkpointing, will pick the first returned one if None, default `None`) * `smaller_is_better`: `bool` (default `True`) * `optimize_first`: `bool` (whether optimization should occur during the first epoch, default `False`) * `detect_anomalies`: `bool` (enable autograd anomaly detection, default `False`) ## Logging Blowtorch will create a folder with name "[timestamp]-[name]-[sequential integer]" for each run inside the `run.save_path` directory. Here it will save the runs's configuration, metrics, a model summary, checkoints as well as source code. Additional loggers can be added through `Run`s `loggers` parameter: * `blowtorch.loggers.WandbLogger`: Logs to Weights & Biases * `blowtorch.loggers.TensorBoardLogger`: Logs to TensorBoard Custom loggers can be created by subclassing `blowtorch.loggers.BaseLogger`. ## Decorators Blowtorch uses the decorator syntax to specify parts of the training pipeline: * `@run.train_step`, `@run.val_step`: Specify train/val steps with one or two functions. Arguments: `batch`, `model`, `is_validate`, `device`, `epoch` * `@run.train_epoch`, `@run.val_epoch`: Specify whole train/val epoch, in case more flexibility for iteration/optimization is required. Arguments: `data_loader`, `model`, `is_validate`, `optimizers` * `@run.configure_optimizers`: Return optimizers and learning rate schedulers. Can either return a single optimizer object or a dictionary with multiple optimizers/schedulers. Arguments: `model`


نیازمندی

مقدار نام
- wheel
==0.4 colorama
- ruamel.yaml
==0.0.31 halo
==1.1 coolname
==4.30 tqdm


زبان مورد نیاز

مقدار نام
>=3.8 Python


نحوه نصب


نصب پکیج whl blowtorch-0.5.4:

    pip install blowtorch-0.5.4.whl


نصب پکیج tar.gz blowtorch-0.5.4:

    pip install blowtorch-0.5.4.tar.gz