معرفی شرکت ها


blosc2-2.2.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Python wrapper for the C-Blosc2 library.
ویژگی مقدار
سیستم عامل -
نام فایل blosc2-2.2.0
نام blosc2
نسخه کتابخانه 2.2.0
نگهدارنده ['Blosc Development Team']
ایمیل نگهدارنده ['blosc@blosc.org']
نویسنده Blosc Development Team
ایمیل نویسنده blosc@blosc.org
آدرس صفحه اصلی https://github.com/Blosc/python-blosc2
آدرس اینترنتی https://pypi.org/project/blosc2/
مجوز https://opensource.org/licenses/BSD-3-Clause
============= Python-Blosc2 ============= A Python wrapper for the extremely fast Blosc2 compression library ================================================================== :Author: The Blosc development team :Contact: blosc@blosc.org :Github: https://github.com/Blosc/python-blosc2 :Actions: |actions| :PyPi: |version| :NumFOCUS: |numfocus| :Code of Conduct: |Contributor Covenant| .. |version| image:: https://img.shields.io/pypi/v/blosc2.png :target: https://pypi.python.org/pypi/blosc2 .. |Contributor Covenant| image:: https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg :target: https://github.com/Blosc/community/blob/master/code_of_conduct.md .. |numfocus| image:: https://img.shields.io/badge/powered%20by-NumFOCUS-orange.svg?style=flat&colorA=E1523D&colorB=007D8A :target: https://numfocus.org .. |actions| image:: https://github.com/Blosc/python-blosc2/actions/workflows/build.yml/badge.svg :target: https://github.com/Blosc/python-blosc2/actions/workflows/build.yml What it is ========== `C-Blosc2 <https://github.com/Blosc/c-blosc2>`_ is the new major version of `C-Blosc <https://github.com/Blosc/c-blosc>`_, and is backward compatible with both the C-Blosc1 API and its in-memory format. Python-Blosc2 is a Python package that wraps C-Blosc2, the newest version of the Blosc compressor. Currently Python-Blosc2 already reproduces the API of `Python-Blosc <https://github.com/Blosc/python-blosc>`_, so it can be used as a drop-in replacement. However, there are a `few exceptions for a full compatibility. <https://github.com/Blosc/python-blosc2/blob/main/RELEASE_NOTES.md#changes-from-python-blosc-to-python-blosc2>`_ In addition, Python-Blosc2 aims to leverage the new C-Blosc2 API so as to support super-chunks, multi-dimensional arrays (`NDArray <https://www.blosc.org/python-blosc2/reference/ndarray_api.html>`_), serialization and other bells and whistles introduced in C-Blosc2. Although this is always and endless process, we have already catch up with most of the C-Blosc2 API capabilities. **Note:** Python-Blosc2 is meant to be backward compatible with Python-Blosc data. That means that it can read data generated with Python-Blosc, but the opposite is not true (i.e. there is no *forward* compatibility). SChunk: a 64-bit compressed store ================================= `SChunk` is the simple data container that handles setting, expanding and getting data and metadata. Contrarily to chunks, a super-chunk can update and resize the data that it contains, supports user metadata, and it does not have the 2 GB storage limitation. Additionally, you can convert a SChunk into a contiguous, serialized buffer (aka `cframe <https://github.com/Blosc/c-blosc2/blob/main/README_CFRAME_FORMAT.rst>`_) and vice-versa; as a bonus, the serialization/deserialization process also works with NumPy arrays and PyTorch/TensorFlow tensors at a blazing speed: .. |compress| image:: https://github.com/Blosc/python-blosc2/blob/main/images/linspace-compress.png?raw=true :width: 100% :alt: Compression speed for different codecs .. |decompress| image:: https://github.com/Blosc/python-blosc2/blob/main/images/linspace-decompress.png?raw=true :width: 100% :alt: Decompression speed for different codecs +----------------+---------------+ | |compress| | |decompress| | +----------------+---------------+ while reaching excellent compression ratios: .. image:: https://github.com/Blosc/python-blosc2/blob/main/images/pack-array-cratios.png?raw=true :width: 75% :align: center :alt: Compression ratio for different codecs Also, if you are a Mac M1/M2 owner, make you a favor and use its native arm64 arch (yes, we are distributing Mac arm64 wheels too; you are welcome ;-): .. |pack_arm| image:: https://github.com/Blosc/python-blosc2/blob/main/images/M1-i386-vs-arm64-pack.png?raw=true :width: 100% :alt: Compression speed for different codecs on Apple M1 .. |unpack_arm| image:: https://github.com/Blosc/python-blosc2/blob/main/images/M1-i386-vs-arm64-unpack.png?raw=true :width: 100% :alt: Decompression speed for different codecs on Apple M1 +------------+--------------+ | |pack_arm| | |unpack_arm| | +------------+--------------+ Read more about `SChunk` features in our blog entry at: https://www.blosc.org/posts/python-blosc2-improvements NDArray: an N-Dimensional store =============================== One of the latest and more exciting additions in Python-Blosc2 is the `NDArray <https://www.blosc.org/python-blosc2/reference/ndarray_api.html>`_ object. It can write and read n-dimensional datasets in an extremely efficient way thanks to a n-dim 2-level partitioning, allowing to slice and dice arbitrary large and compressed data in a more fine-grained way: .. image:: https://github.com/Blosc/python-blosc2/blob/main/images/b2nd-2level-parts.png?raw=true :width: 75% To wet you appetite, here it is how the `NDArray` object performs on getting slices orthogonal to the different axis of a 4-dim dataset: .. image:: https://github.com/Blosc/python-blosc2/blob/main/images/Read-Partial-Slices-B2ND.png?raw=true :width: 75% We have blogged about this: https://www.blosc.org/posts/blosc2-ndim-intro We also have a ~2 min explanatory video on `why slicing in a pineapple-style (aka double partition) is useful <https://www.youtube.com/watch?v=LvP9zxMGBng>`_: .. image:: https://github.com/Blosc/blogsite/blob/master/files/images/slicing-pineapple-style.png?raw=true :width: 50% :alt: Slicing a dataset in pineapple-style :target: https://www.youtube.com/watch?v=LvP9zxMGBng Installing ========== Blosc is now offering Python wheels for the main OS (Win, Mac and Linux) and platforms. You can install binary packages from PyPi using ``pip``: .. code-block:: console pip install blosc2 Documentation ============= The documentation is here: https://blosc.org/python-blosc2/python-blosc2.html Also, some examples are available on: https://github.com/Blosc/python-blosc2/tree/main/examples Building from sources ===================== `python-blosc2` comes with the C-Blosc2 sources with it and can be built in-place: .. code-block:: console git clone https://github.com/Blosc/python-blosc2/ cd python-blosc2 git submodule update --init --recursive python -m pip install -r requirements-build.txt python setup.py build_ext --inplace That's all. You can proceed with testing section now. Testing ======= After compiling, you can quickly check that the package is sane by running the tests: .. code-block:: console python -m pip install -r requirements-tests.txt python -m pytest (add -v for verbose mode) Benchmarking ============ If curious, you may want to run a small benchmark that compares a plain NumPy array copy against compression through different compressors in your Blosc build: .. code-block:: console PYTHONPATH=. python bench/pack_compress.py License ======= The software is licenses under a 3-Clause BSD license. A copy of the python-blosc2 license can be found in `LICENSE.txt <https://github.com/Blosc/python-blosc2/tree/main/LICENSE.txt>`_. Mailing list ============ Discussion about this module is welcome in the Blosc list: blosc@googlegroups.com https://groups.google.es/group/blosc Twitter ======= Please follow `@Blosc2 <https://twitter.com/Blosc2>`_ to get informed about the latest developments. ---- **Enjoy data!**


نیازمندی

مقدار نام
- msgpack
>=1.4 ndindex
>=1.20.3 numpy
- py-cpuinfo
- rich


زبان مورد نیاز

مقدار نام
>=3.8, <4 Python


نحوه نصب


نصب پکیج whl blosc2-2.2.0:

    pip install blosc2-2.2.0.whl


نصب پکیج tar.gz blosc2-2.2.0:

    pip install blosc2-2.2.0.tar.gz