معرفی شرکت ها


blosc-1.9.3.dev0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Blosc data compressor
ویژگی مقدار
سیستم عامل -
نام فایل blosc-1.9.3.dev0
نام blosc
نسخه کتابخانه 1.9.3.dev0
نگهدارنده ['The Blosc development team']
ایمیل نگهدارنده ['blosc@blosc.org']
نویسنده The Blosc development team
ایمیل نویسنده blosc@blosc.org
آدرس صفحه اصلی http://github.com/blosc/python-blosc
آدرس اینترنتی https://pypi.org/project/blosc/
مجوز https://opensource.org/licenses/BSD-3-Clause
============ Python-Blosc ============ A Python wrapper for the extremely fast Blosc compression library ================================================================= :Author: The Blosc development team :Contact: blosc@blosc.org :Github: https://github.com/Blosc/python-blosc :URL: https://www.blosc.org/python-blosc/python-blosc.html :PyPi: |version| :Anaconda: |anaconda| :Gitter: |gitter| :Code of Conduct: |Contributor Covenant| .. |version| image:: https://img.shields.io/pypi/v/blosc.png :target: https://pypi.python.org/pypi/blosc .. |anaconda| image:: https://anaconda.org/conda-forge/python-blosc/badges/version.svg :target: https://anaconda.org/conda-forge/python-blosc .. |gitter| image:: https://badges.gitter.im/Blosc/c-blosc.svg :target: https://gitter.im/Blosc/c-blosc .. |Contributor Covenant| image:: https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg :target: https://github.com/Blosc/community/blob/master/code_of_conduct.md What it is ========== Blosc (http://blosc.org) is a high performance compressor optimized for binary data. It has been designed to transmit data to the processor cache faster than the traditional, non-compressed, direct memory fetch approach via a memcpy() OS call. Blosc works well for compressing numerical arrays that contains data with relatively low entropy, like sparse data, time series, grids with regular-spaced values, etc. python-blosc a Python package that wraps Blosc. python-blosc supports Python 3.8 or higher versions. Installing ========== Blosc is now offering Python wheels for the main OS (Win, Mac and Linux) and platforms. You can install binary packages from PyPi using ``pip``: .. code-block:: console $ pip install blosc Documentation ============= The Sphinx based documentation is here: https://blosc.org/python-blosc/python-blosc.html Also, some examples are available on python-blosc wiki page: https://github.com/blosc/python-blosc/wiki Lastly, here is the `recording <https://www.youtube.com/watch?v=rilU44j_wUU&list=PLNkWzv63CorW83NY3U93gUar645jTXpJF&index=15>`_ and the `slides <http://www.blosc.org/docs/haenel-ep14-compress-me-stupid.pdf>`_ from the talk "Compress me stupid" at the EuroPython 2014. Building ======== If you need more control, there are different ways to compile python-blosc, depending if you want to link with an already installed Blosc library or not. Installing via setuptools ------------------------- `python-blosc` comes with the Blosc sources with it and can be built with: .. code-block:: console $ python -m pip install -r requirements-dev.txt $ python setup.py build_ext --inplace Any codec can be enabled (`=1`) or disabled (`=0`) on this build-path with the appropriate OS environment variables `INCLUDE_LZ4`, `INCLUDE_SNAPPY`, `INCLUDE_ZLIB`, and `INCLUDE_ZSTD`. By default all the codecs in Blosc are enabled except Snappy (due to some issues with C++ with the `gcc` toolchain). Compiler specific optimisations are automatically enabled by inspecting the CPU flags building Blosc. They can be manually disabled by setting the following environmental variables: `DISABLE_BLOSC_SSE2` and `DISABLE_BLOSC_AVX2`. `setuptools` is limited to using the compiler specified in the environment variable `CC` which on posix systems is usually `gcc`. This often causes trouble with the Snappy codec, which is written in C++, and as a result Snappy is no longer compiled by default. This problem is not known to affect MSVC or clang. Snappy is considered optional in Blosc as its compression performance is below that of the other codecs. That's all. You can proceed with testing section now. Compiling with an installed Blosc library ----------------------------------------- This approach uses pre-built, fully optimized versions of Blosc built via CMake. Go to https://github.com/Blosc/c-blosc/releases and download and install the C-Blosc library. Then, you can tell python-blosc where is the C-Blosc library in a couple of ways: Using an environment variable: .. code-block:: console $ export USE_SYSTEM_BLOSC=1 # or "set USE_SYSTEM_BLOSC=1" on Windows $ export Blosc_ROOT=/usr/local/customprefix # If you installed Blosc into a custom location $ python setup.py build_ext --inplace Using flags: .. code-block:: console $ python setup.py build_ext --inplace -DUSE_SYSTEM_BLOSC:BOOL=YES -DBlosc_ROOT:PATH=/usr/local/customprefix Testing ======= After compiling, you can quickly check that the package is sane by running the doctests in ``blosc/test.py``: .. code-block:: console $ python -m blosc.test (add -v for verbose mode) Once installed, you can re-run the tests at any time with: .. code-block:: console $ python -c "import blosc; blosc.test()" Benchmarking ============ If curious, you may want to run a small benchmark that compares a plain NumPy array copy against compression through different compressors in your Blosc build: .. code-block:: console $ PYTHONPATH=. python bench/compress_ptr.py Just to whet your appetite, here are the results for an Intel Xeon E5-2695 v3 @ 2.30GHz, running Python 3.5, CentOS 7, but YMMV (and will vary!):: -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= python-blosc version: 1.5.1.dev0 Blosc version: 1.11.2 ($Date:: 2017-01-27 #$) Compressors available: ['blosclz', 'lz4', 'lz4hc', 'snappy', 'zlib', 'zstd'] Compressor library versions: BloscLZ: 1.0.5 LZ4: 1.7.5 Snappy: 1.1.1 Zlib: 1.2.7 Zstd: 1.1.2 Python version: 3.5.2 |Continuum Analytics, Inc.| (default, Jul 2 2016, 17:53:06) [GCC 4.4.7 20120313 (Red Hat 4.4.7-1)] Platform: Linux-3.10.0-327.18.2.el7.x86_64-x86_64 (#1 SMP Thu May 12 11:03:55 UTC 2016) Linux dist: CentOS Linux 7.2.1511 Processor: x86_64 Byte-ordering: little Detected cores: 56 Number of threads to use by default: 4 -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= Creating NumPy arrays with 10**8 int64/float64 elements: *** ctypes.memmove() *** Time for memcpy(): 0.276 s (2.70 GB/s) Times for compressing/decompressing with clevel=5 and 24 threads *** the arange linear distribution *** *** blosclz , noshuffle *** 0.382 s (1.95 GB/s) / 0.300 s (2.48 GB/s) Compr. ratio: 1.0x *** blosclz , shuffle *** 0.042 s (17.77 GB/s) / 0.027 s (27.18 GB/s) Compr. ratio: 57.1x *** blosclz , bitshuffle *** 0.094 s (7.94 GB/s) / 0.041 s (18.28 GB/s) Compr. ratio: 74.0x *** lz4 , noshuffle *** 0.156 s (4.79 GB/s) / 0.052 s (14.30 GB/s) Compr. ratio: 2.0x *** lz4 , shuffle *** 0.033 s (22.58 GB/s) / 0.034 s (22.03 GB/s) Compr. ratio: 68.6x *** lz4 , bitshuffle *** 0.059 s (12.63 GB/s) / 0.053 s (14.18 GB/s) Compr. ratio: 33.1x *** lz4hc , noshuffle *** 0.443 s (1.68 GB/s) / 0.070 s (10.62 GB/s) Compr. ratio: 2.0x *** lz4hc , shuffle *** 0.102 s (7.31 GB/s) / 0.029 s (25.42 GB/s) Compr. ratio: 97.5x *** lz4hc , bitshuffle *** 0.206 s (3.62 GB/s) / 0.038 s (19.85 GB/s) Compr. ratio: 180.5x *** snappy , noshuffle *** 0.154 s (4.84 GB/s) / 0.056 s (13.28 GB/s) Compr. ratio: 2.0x *** snappy , shuffle *** 0.044 s (16.89 GB/s) / 0.047 s (15.95 GB/s) Compr. ratio: 17.4x *** snappy , bitshuffle *** 0.064 s (11.58 GB/s) / 0.061 s (12.26 GB/s) Compr. ratio: 18.2x *** zlib , noshuffle *** 1.172 s (0.64 GB/s) / 0.135 s (5.50 GB/s) Compr. ratio: 5.3x *** zlib , shuffle *** 0.260 s (2.86 GB/s) / 0.086 s (8.67 GB/s) Compr. ratio: 120.8x *** zlib , bitshuffle *** 0.262 s (2.84 GB/s) / 0.094 s (7.96 GB/s) Compr. ratio: 260.1x *** zstd , noshuffle *** 0.973 s (0.77 GB/s) / 0.093 s (8.00 GB/s) Compr. ratio: 7.8x *** zstd , shuffle *** 0.093 s (7.97 GB/s) / 0.023 s (32.71 GB/s) Compr. ratio: 156.7x *** zstd , bitshuffle *** 0.115 s (6.46 GB/s) / 0.029 s (25.60 GB/s) Compr. ratio: 320.6x *** the linspace linear distribution *** *** blosclz , noshuffle *** 0.341 s (2.19 GB/s) / 0.291 s (2.56 GB/s) Compr. ratio: 1.0x *** blosclz , shuffle *** 0.132 s (5.65 GB/s) / 0.023 s (33.10 GB/s) Compr. ratio: 2.0x *** blosclz , bitshuffle *** 0.166 s (4.50 GB/s) / 0.036 s (20.89 GB/s) Compr. ratio: 2.8x *** lz4 , noshuffle *** 0.142 s (5.26 GB/s) / 0.028 s (27.07 GB/s) Compr. ratio: 1.0x *** lz4 , shuffle *** 0.093 s (8.01 GB/s) / 0.030 s (24.87 GB/s) Compr. ratio: 3.4x *** lz4 , bitshuffle *** 0.102 s (7.31 GB/s) / 0.039 s (19.13 GB/s) Compr. ratio: 5.3x *** lz4hc , noshuffle *** 0.700 s (1.06 GB/s) / 0.044 s (16.77 GB/s) Compr. ratio: 1.1x *** lz4hc , shuffle *** 0.203 s (3.67 GB/s) / 0.021 s (36.22 GB/s) Compr. ratio: 8.6x *** lz4hc , bitshuffle *** 0.342 s (2.18 GB/s) / 0.028 s (26.50 GB/s) Compr. ratio: 14.2x *** snappy , noshuffle *** 0.271 s (2.75 GB/s) / 0.274 s (2.72 GB/s) Compr. ratio: 1.0x *** snappy , shuffle *** 0.099 s (7.54 GB/s) / 0.042 s (17.55 GB/s) Compr. ratio: 4.2x *** snappy , bitshuffle *** 0.127 s (5.86 GB/s) / 0.043 s (17.20 GB/s) Compr. ratio: 6.1x *** zlib , noshuffle *** 1.525 s (0.49 GB/s) / 0.158 s (4.70 GB/s) Compr. ratio: 1.6x *** zlib , shuffle *** 0.346 s (2.15 GB/s) / 0.098 s (7.59 GB/s) Compr. ratio: 10.7x *** zlib , bitshuffle *** 0.420 s (1.78 GB/s) / 0.104 s (7.20 GB/s) Compr. ratio: 18.0x *** zstd , noshuffle *** 1.061 s (0.70 GB/s) / 0.096 s (7.79 GB/s) Compr. ratio: 1.9x *** zstd , shuffle *** 0.203 s (3.68 GB/s) / 0.052 s (14.21 GB/s) Compr. ratio: 14.2x *** zstd , bitshuffle *** 0.251 s (2.97 GB/s) / 0.047 s (15.84 GB/s) Compr. ratio: 22.2x *** the random distribution *** *** blosclz , noshuffle *** 0.340 s (2.19 GB/s) / 0.285 s (2.61 GB/s) Compr. ratio: 1.0x *** blosclz , shuffle *** 0.091 s (8.21 GB/s) / 0.017 s (44.29 GB/s) Compr. ratio: 3.9x *** blosclz , bitshuffle *** 0.080 s (9.27 GB/s) / 0.029 s (26.12 GB/s) Compr. ratio: 6.1x *** lz4 , noshuffle *** 0.150 s (4.95 GB/s) / 0.027 s (28.05 GB/s) Compr. ratio: 2.4x *** lz4 , shuffle *** 0.068 s (11.02 GB/s) / 0.029 s (26.03 GB/s) Compr. ratio: 4.5x *** lz4 , bitshuffle *** 0.063 s (11.87 GB/s) / 0.054 s (13.70 GB/s) Compr. ratio: 6.2x *** lz4hc , noshuffle *** 0.645 s (1.15 GB/s) / 0.019 s (39.22 GB/s) Compr. ratio: 3.5x *** lz4hc , shuffle *** 0.257 s (2.90 GB/s) / 0.022 s (34.62 GB/s) Compr. ratio: 5.1x *** lz4hc , bitshuffle *** 0.128 s (5.80 GB/s) / 0.029 s (25.52 GB/s) Compr. ratio: 6.2x *** snappy , noshuffle *** 0.164 s (4.54 GB/s) / 0.048 s (15.46 GB/s) Compr. ratio: 2.2x *** snappy , shuffle *** 0.082 s (9.09 GB/s) / 0.043 s (17.39 GB/s) Compr. ratio: 4.3x *** snappy , bitshuffle *** 0.071 s (10.48 GB/s) / 0.046 s (16.08 GB/s) Compr. ratio: 5.0x *** zlib , noshuffle *** 1.223 s (0.61 GB/s) / 0.093 s (7.97 GB/s) Compr. ratio: 4.0x *** zlib , shuffle *** 0.636 s (1.17 GB/s) / 0.126 s (5.89 GB/s) Compr. ratio: 5.5x *** zlib , bitshuffle *** 0.327 s (2.28 GB/s) / 0.109 s (6.81 GB/s) Compr. ratio: 6.2x *** zstd , noshuffle *** 1.432 s (0.52 GB/s) / 0.103 s (7.27 GB/s) Compr. ratio: 4.2x *** zstd , shuffle *** 0.388 s (1.92 GB/s) / 0.031 s (23.71 GB/s) Compr. ratio: 5.9x *** zstd , bitshuffle *** 0.127 s (5.86 GB/s) / 0.033 s (22.77 GB/s) Compr. ratio: 6.4x Also, Blosc works quite well on ARM processors (even without NEON support yet):: -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= python-blosc version: 1.4.4 Blosc version: 1.11.2 ($Date:: 2017-01-27 #$) Compressors available: ['blosclz', 'lz4', 'lz4hc', 'snappy', 'zlib', 'zstd'] Compressor library versions: BloscLZ: 1.0.5 LZ4: 1.7.5 Snappy: 1.1.1 Zlib: 1.2.8 Zstd: 1.1.2 Python version: 3.6.0 (default, Dec 31 2016, 21:20:16) [GCC 4.9.2] Platform: Linux-3.4.113-sun8i-armv7l (#50 SMP PREEMPT Mon Nov 14 08:41:55 CET 2016) Linux dist: debian 9.0 Processor: not recognized Byte-ordering: little Detected cores: 4 Number of threads to use by default: 4 -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= *** ctypes.memmove() *** Time for memcpy(): 0.015 s (93.57 MB/s) Times for compressing/decompressing with clevel=5 and 4 threads *** user input *** *** blosclz , noshuffle *** 0.015 s (89.93 MB/s) / 0.010 s (138.32 MB/s) Compr. ratio: 2.7x *** blosclz , shuffle *** 0.023 s (60.25 MB/s) / 0.012 s (112.71 MB/s) Compr. ratio: 2.3x *** blosclz , bitshuffle *** 0.018 s (77.63 MB/s) / 0.021 s (66.76 MB/s) Compr. ratio: 7.3x *** lz4 , noshuffle *** 0.008 s (177.14 MB/s) / 0.009 s (159.00 MB/s) Compr. ratio: 3.6x *** lz4 , shuffle *** 0.010 s (131.29 MB/s) / 0.012 s (117.69 MB/s) Compr. ratio: 3.5x *** lz4 , bitshuffle *** 0.015 s (89.97 MB/s) / 0.022 s (63.62 MB/s) Compr. ratio: 8.4x *** lz4hc , noshuffle *** 0.071 s (19.30 MB/s) / 0.007 s (186.64 MB/s) Compr. ratio: 8.6x *** lz4hc , shuffle *** 0.079 s (17.30 MB/s) / 0.014 s (95.99 MB/s) Compr. ratio: 6.2x *** lz4hc , bitshuffle *** 0.062 s (22.23 MB/s) / 0.027 s (51.53 MB/s) Compr. ratio: 9.7x *** snappy , noshuffle *** 0.008 s (173.87 MB/s) / 0.009 s (148.77 MB/s) Compr. ratio: 4.4x *** snappy , shuffle *** 0.011 s (123.22 MB/s) / 0.016 s (85.16 MB/s) Compr. ratio: 4.4x *** snappy , bitshuffle *** 0.015 s (89.02 MB/s) / 0.021 s (64.87 MB/s) Compr. ratio: 6.2x *** zlib , noshuffle *** 0.047 s (29.26 MB/s) / 0.011 s (121.83 MB/s) Compr. ratio: 14.7x *** zlib , shuffle *** 0.080 s (17.20 MB/s) / 0.022 s (63.61 MB/s) Compr. ratio: 9.4x *** zlib , bitshuffle *** 0.059 s (23.50 MB/s) / 0.033 s (41.10 MB/s) Compr. ratio: 10.5x *** zstd , noshuffle *** 0.113 s (12.21 MB/s) / 0.011 s (124.64 MB/s) Compr. ratio: 15.6x *** zstd , shuffle *** 0.154 s (8.92 MB/s) / 0.026 s (52.56 MB/s) Compr. ratio: 9.9x *** zstd , bitshuffle *** 0.116 s (11.86 MB/s) / 0.036 s (38.40 MB/s) Compr. ratio: 11.4x For details on the ARM benchmark see: https://github.com/Blosc/python-blosc/issues/105 In case you find your own results interesting, please report them back to the authors! License ======= The software is licenses under a 3-Clause BSD licsense. A copy of the python-blosc license can be found in `LICENSE.txt <https://github.com/Blosc/python-blosc/blob/main/LICENSE.txt>`_. Mailing list ============ Discussion about this module is welcome in the Blosc list: blosc@googlegroups.com http://groups.google.es/group/blosc ---- **Enjoy data!** .. Local Variables: .. mode: rst .. coding: utf-8 .. fill-column: 72 .. End:


زبان مورد نیاز

مقدار نام
>=3.8 Python


نحوه نصب


نصب پکیج whl blosc-1.9.3.dev0:

    pip install blosc-1.9.3.dev0.whl


نصب پکیج tar.gz blosc-1.9.3.dev0:

    pip install blosc-1.9.3.dev0.tar.gz