معرفی شرکت ها


bloatectomy-0.0.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Bloatectomy: a method for the identification and removal of duplicate text in the bloated notes of electronic health records and other documents.
ویژگی مقدار
سیستم عامل -
نام فایل bloatectomy-0.0.9
نام bloatectomy
نسخه کتابخانه 0.0.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Summer Rankin, Roselie Bright, Katherine Dowdy
ایمیل نویسنده summerKRankin@gmail.com
آدرس صفحه اصلی https://github.com/MIT-LCP/bloatectomy
آدرس اینترنتی https://pypi.org/project/bloatectomy/
مجوز GPLv3
# Bloatectomy Bloatectomy: a method for the identification and removal of duplicate text in the bloated notes of electronic health records and other documents. Takes in a list of notes or a single file (.docx, .txt, .rtf, etc) or single string to be marked for duplicates. Marked output and tokens are output. # Requirements - Python>=3.7.x (in order for the regular expressions to work correctly) - re - sys - pandas (optional, only necessary if using MIMIC III data) - docx (optional, only necessary if input or output is a word/docx file) # Installation using anaconda or miniconda ``` conda install -c summerkrankin bloatectomy ``` using pip via PyPI make sure to install it to python3 if your default is python2 ``` python3 -m pip install bloatectomy ``` using pip via github ``` python3 -m pip install git+git://github.com/MIT-LCP/bloatectomy ``` manual install by cloning the repository ``` git clone git://github.com/MIT-LCP/bloatectomy cd bloatectomy python3 setup.py install ``` # Examples To run bloatectomy on a sample string with the following options: - highlighting duplicates - display raw results - output file as html - output file of numbered tokens: ``` from bloatectomy import bloatectomy text = '''Assessment and Plan 61 yo male Hep C cirrhosis Abd pain: -other labs: PT / PTT / INR:16.6// 1.5, CK / CKMB / ICU Care -other labs: PT / PTT / INR:16.6// 1.5, CK / CKMB / Assessment and Plan ''' bloatectomy(text, style='highlight', display=True, filename='sample_txt_highlight_output', output='html', output_numbered_tokens=True) ``` To use with example text or load ipynb examples, download the repository or just the bloatectomy_examples folder ``` cd bloatectomy_examples from bloatectomy import bloatectomy bloatectomy('./input/sample_text.txt', style='highlight', display=False, filename='./output/sample_txt_highlight_output', output='html', output_numbered_tokens=True, output_original_tokens=True) ``` # Documentation The paper is located at TBA ``` class bloatectomy(input_text, path = '', filename='bloatectomized_file', display=False, style='highlight', output='html', output_numbered_tokens=False, output_original_tokens=False, regex1=r"(.+?\.[\s\n]+)", regex2=r"(?=\n\s*[A-Z1-9#-]+.*)", postgres_engine=None, postgres_table=None) ``` ## Parameters **input_text**: file, str, list An input document (.txt, .rtf, .docx), a string of text, or list of hadm_ids for postgres mimiciii database or the raw text. **style**: str, optional, default=`highlight` Method for denoting a duplicate. The following are allowed: `highlight`, `bold`, `remov`. **filename**: str, optional, default=`bloatectomized_file` A string to name output file of the bloat-ectomized document. **path**: str, optional, default=`' '` The directory for output files. **output_numbered_tokens**: bool, optional, default=`False` If set to `True`, a .txt file with each token enumerated and marked for duplication, is output as `[filename]_token_numbers.txt`. This is useful when diagnosing your own regular expression for tokenization or testing the `remov` option for **style**. **output_original_tokens**: bool, optional, default=`False` If set to `True`, a .txt file with each original (non-marked) token enumerated but not marked for duplication, is output as `[filename]_original_token_numbers.txt`. **display**: bool, optional, default=`False` If set to `True`, the bloatectomized text will display in the console on completion. **regex1**: str, optional, default=`r"(.+?\.[\s\n]+)"` The regular expression for the first tokenization. Split on a period (.) followed by one or more white space characters (space, tab, line breaks) or a line feed character (`\n`). This can be replaced with any valid regular expression to change the way tokens are created. **regex2**: str, optional, default=`r"(?=\n\s*[A-Z1-9#-]+.*)"` The regular expression for the second tokenization. Split on any newline character (`\n`) followed by an uppercase letter, a number, or a dash. This can be replaced with any valid regular expression to change how sub-tokens are created. **postgres_engine**: str, optional The postgres connection. Only relevant for use with the MIMIC III dataset. When data is pulled from postgres the hadm_id of the file will be appended to the `filename` if set or the default `bloatectomized_file`. See the jupyter notebook [mimic_bloatectomy_example](./bloatectomy_examples/mimic_bloatectomy_example.ipynb) for the example code. **postgres_table**: str, optional The name of the postgres table containing the concatenated notes. Only relevant for use with the MIMIC III dataset. When data is pulled from postgres the hadm_id of the file will be appended to the `filename` if set or the default `bloatectomized_file`. See the jupyter notebook [mimic_bloatectomy_example](./bloatectomy_examples/mimic_bloatectomy_example.ipynb) for the example code.


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl bloatectomy-0.0.9:

    pip install bloatectomy-0.0.9.whl


نصب پکیج tar.gz bloatectomy-0.0.9:

    pip install bloatectomy-0.0.9.tar.gz