معرفی شرکت ها


blksheep-0.0.7


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A package for differential extreme values analysis
ویژگی مقدار
سیستم عامل -
نام فایل blksheep-0.0.7
نام blksheep
نسخه کتابخانه 0.0.7
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Ruggles Lab
ایمیل نویسنده ruggleslab@gmail.com
آدرس صفحه اصلی https://github.com/ruggleslab/blackSheep/
آدرس اینترنتی https://pypi.org/project/blksheep/
مجوز -
# BlackSheep ##### A tool for differential extreme-value analysis ### Installation With pip ```bash pip install blksheep ``` With conda ```bash conda install -c bioconda blksheep ``` ### Requirements (automatically taken care of with pip and conda) pandas numpy matplotlib seaborn scipy scikit-learn statsmodels ### Documentation https://blacksheep.readthedocs.io/en/latest/index.html ### Usage ##### In python ```python import blacksheep # Read in data values_file = '' #insert values file here annotations_file = '' #insert annotations file here values = deva.read_in_values(values_file) annotations = deva.read_in_values(annotations_file) # Binarize annotation columns annotations = blacksheep.binarize_annotations(annotations) # Run outliers comparative analysis outliers, qvalues = blacksheep.deva( values, annotations, save_outlier_table=True, save_qvalues=True, save_comparison_summaries=True ) # Pull out results qvalues_table = qvalues.df vis_table = outliers.frac_table # Make heatmaps for significant genes for col in annotations.columns: axs = blacksheep.plot_heatmap(annotations, qvalues_table, col, vis_table, savefig=True) # Normalize values phospho = blacksheep.read_in_values('') #Fill in file here protein = blacksheep.read_in_values('') #Fill in file here ``` ##### Command line interface *Example* ```bash blacksheep binarize annotations.tsv --output_prefix annotations_test blacksheep deva values.csv annotations_test.binarized.tsv --output_prefix test \ --write_outlier_table --write_comparison_summaries --write_gene_list \ --make_heatmaps ``` *Full help* Just make the outliers table: ```bash usage: blacksheep outliers_table [-h] [--output_prefix OUTPUT_PREFIX] [--iqrs IQRS] [--up_or_down {up,down}] [--ind_sep IND_SEP] [--do_not_aggregate] [--write_frac_table] values Takes a table of values and converts to a table of outlier counts. positional arguments: values File path to input values. Columns must be samples, genes must be sites or genes. Only .tsv and .csv accepted. optional arguments: -h, --help show this help message and exit --output_prefix OUTPUT_PREFIX Output prefix for writing files. Default outliers. --iqrs IQRS Number of interquartile ranges (IQRs) above or below the median to consider a value an outlier. Default is 1.5 IQRs. --up_or_down {up,down} Whether to look for up or down outliers. Choices are up or down. Default up. --ind_sep IND_SEP If site labels have a parent molecule (e.g. a gene name such as ATM) and a site identifier (e.g. S365) this is the delimiter between the two elements. Default is - --do_not_aggregate Use flag if you do not want to sum outliers based on site prefixes. --write_frac_table Use flag if you want to write a table with fraction of values per site, per sample that are outliers. Will not be written by default. Useful for visualization. ``` Binarize the columns in an annotations table. **Warning: do not include non-categorical columns, or columns you don't want binarized. You'll end up with a huge un-wieldly table. ** ```bash usage: blacksheep binarize [-h] [--output_prefix OUTPUT_PREFIX] annotations Takes an annotation table where some columns may have more than 2 possible values (not including empty/null values) and outputs an annotation table with only two values per annotation. Propagates null values. positional arguments: annotations Annotation table with samples as rows and annotation labels as columns. optional arguments: -h, --help show this help message and exit --output_prefix OUTPUT_PREFIX Output prefix for writing files. Default outliers. ``` Compare all the groups described in columns of an annotation table using outlier counts ```bash usage: blacksheep compare_groups [-h] [--output_prefix OUTPUT_PREFIX] [--frac_filter FRAC_FILTER] [--write_comparison_summaries] [--iqrs IQRS] [--up_or_down {up,down}] [--write_gene_list] [--make_heatmaps] [--fdr FDR] [--red_or_blue {red,blue}] [--annotation_colors ANNOTATION_COLORS] outliers_table annotations Takes an annotation table and outlier count table (output of outliers_table) and outputs qvalues from a statistical test that looks for enrichment of outlier values in each group in the annotation table. For each value in each comparison, the qvalue table will have 1 column, if there are any genes in that comparison. positional arguments: outliers_table Table of outlier counts (output of outliers_table). Must be .tsv or .csv file, with outlier and non- outlier counts as columns, and genes/sites as rows. annotations Table of annotations. Must be .csv or .tsv. Samples as rows and comparisons as columns. Comparisons must have only unique values (not including missing values). If there are more options than that, you can use binarize to prepare the table. optional arguments: -h, --help show this help message and exit --output_prefix OUTPUT_PREFIX Output prefix for writing files. Default outliers. --frac_filter FRAC_FILTER The minimum fraction of samples per group that must have an outlier in a gene toconsider that gene in the analysis. This is used to prevent a high number of outlier values in 1 sample from driving a low qvalue. Default 0.3 --write_comparison_summaries Use flag to write a separate file for each column in the annotations table, with outlier counts in each group, p-values and q-values in each group. --iqrs IQRS Number of IQRs used to define outliers in the input count table. Optional. --up_or_down {up,down} Whether input outlier table represents up or down outliers. Needed for output file labels. Default up --write_gene_list Use flag to write a list of significantly enriched genes for each value in each comparison. If used, need an fdr threshold as well. --make_heatmaps Use flag to draw a heatmap of signficantly enriched genes for each value in each comparison. If used, need an fdr threshold as well. --fdr FDR FDR cut off to use for signficantly enriched gene lists and heatmaps. Default 0.05 --red_or_blue {red,blue} If --make_heatmaps is called, color of values to draw on heatmap. Default red. --annotation_colors ANNOTATION_COLORS File with color map to use for annotation header if --make_heatmaps is used. Must have a 'value color' format for each value in annotations. Any value not represented will be assigned a new color. ``` Make heatmaps visualizing enriched genes for each group in an annotation table ```bash usage: blacksheep visualize [-h] [--output_prefix OUTPUT_PREFIX] [--annotations_to_show ANNOTATIONS_TO_SHOW [ANNOTATIONS_TO_SHOW ...]] [--fdr FDR] [--red_or_blue {red,blue}] [--annotation_colors ANNOTATION_COLORS] [--write_gene_list] comparison_qvalues annotations visualization_table comparison_of_interest Used to make custom heatmaps from significant genes. positional arguments: comparison_qvalues Table of qvalues, output from compare_groups. Must be .csv or .tsv. Has genes/sites as rows and comparison values as columns. annotations Table of annotations used to generate qvalues. visualization_table Values to visualize in heatmap. Samples as columns and genes/sites as rows. Using outlier fraction table is recommended, but original values can also be used if no aggregation was used. comparison_of_interest Name of column in qvalues table from which to visualize significant genes. optional arguments: -h, --help show this help message and exit --output_prefix OUTPUT_PREFIX Output prefix for writing files. Default outliers. --annotations_to_show ANNOTATIONS_TO_SHOW [ANNOTATIONS_TO_SHOW ...] Names of columns from the annotation table to show in the header of the heatmap. Default is all columns. --fdr FDR FDR threshold to use to select genes to visualize. Default 0.05 --red_or_blue {red,blue} Color of values to draw on heatmap. Default red. --annotation_colors ANNOTATION_COLORS File with color map to use for annotation header. Must have a line with 'value color' format for each value in annotations. Any value not represented will be assigned a new color. --write_gene_list Use flag to write a list of significantly enriched genes for each value in each comparison. ``` Run the whole pipeline: call outliers, perform comparisons on all groups in an annotation table , optionally make heatmaps for each group. ```bash usage: blacksheep deva [-h] [--output_prefix OUTPUT_PREFIX] [--iqrs IQRS] [--up_or_down {up,down}] [--do_not_aggregate] [--write_outlier_table] [--write_frac_table] [--ind_sep IND_SEP] [--frac_filter FRAC_FILTER] [--write_comparison_summaries] [--fdr FDR] [--write_gene_list] [--make_heatmaps] [--red_or_blue {red,blue}] [--annotation_colors ANNOTATION_COLORS] values annotations Runs whole outliers pipeline. Has options to output every possible output. positional arguments: values File path to input values. Samples are columns and genes/sites are rows. Only .tsv and .csv accepted. annotations File path to annotation values. Rows are sample names, header is different annotations. e.g. mutation status. optional arguments: -h, --help show this help message and exit --output_prefix OUTPUT_PREFIX Output prefix for writing files. Default outliers. --iqrs IQRS Number of inter-quartile ranges (IQRs) above or below the median to consider a value an outlier. Default is 1.5. --up_or_down {up,down} Whether to look for up or down outliers. Choices are up or down. Default up. --do_not_aggregate Use flag if you do not want to sum outliers based on site prefixes. --write_outlier_table Use flag to write a table of outlier counts. --write_frac_table Use flag if you want to write a table with fraction of values per site per sample that are outliers. Useful for custom visualization. --ind_sep IND_SEP If site labels have a parent molecule (e.g. a gene name such as ATM) and a site identifier (e.g. S365) this is the delimiter between the two elements. Default is - --frac_filter FRAC_FILTER The minimum fraction of samples per group that must have an outlier in a gene toconsider that gene in the analysis. This is used to prevent a high number of outlier values in 1 sample from driving a low qvalue. Default 0.3 --write_comparison_summaries Use flag to write a separate file for each column in the annotations table, with outlier counts in each group, p-values and q-values in each group. --fdr FDR FDR threshold to use to select genes to visualize. Default 0.05 --write_gene_list Use flag to write a list of significantly enriched genes for each value in each comparison. --make_heatmaps Use flag to draw a heatmap of significantly enriched genes for each value in each comparison. If used, need an fdr threshold as well. --red_or_blue {red,blue} Color of values to draw on heatmap. Default red. --annotation_colors ANNOTATION_COLORS File with color map to use for annotation header. Must have a line with 'value color' format for each value in annotations. Any value not represented will be assigned a new color. ``` For finding the value differences that cannot be explained by a different data level. For example , this can be used to find out variation due to differential phosphorylation (phospho as target_values) not due to protein abundance variation (protein as normalizer_values). **Warning: Row IDs between the two tables must match** ```bash usage: blacksheep normalize [-h] [--ind_sep IND_SEP] [--output_prefix OUTPUT_PREFIX] target_values normalizer_values Takes a target table and a normalizer table, and returns a normalized target table. Builds a regularized linear model for each line in the target table using the matching row ID in the normalizer table, and finds the residuals of that model for each value. for example, this could be used to normalize phospho-peptide data by protein abundance data; resulting values will reflect only abundance differences due to phosphorylation changes, not peptide abundances. Another use could be normalizing RNA by CNA. positional arguments: target_values Table of values to be normalized. Sites/genes as rows, samples as columns. Row identifiers must be unique. normalizer_values Table of values to use for normalization. Sites/genes as rows, samples as columns. Row identifiers must be unique, and must match the pre-ind_sep part of the target values identifiers. optional arguments: -h, --help show this help message and exit --ind_sep IND_SEP Separator used in index if target is site specific. Row IDs before ind_sep in the target must match the row IDs in normalizer_values. If row IDs already match, leave blank. --output_prefix OUTPUT_PREFIX Prefix for output file. Suffix will be '.normalized.tsv' ``` For a more thorough vignette, refer to our [supplementary notebooks](https://github.com/ruggleslab/blacksheep_supp)


نیازمندی

مقدار نام
>=3.3.4 matplotlib
>=1.20.1 numpy
>=1.2.2 pandas
>=1.6.0 scipy
>=0.11.1 seaborn
>=0.12.2 statsmodels


نحوه نصب


نصب پکیج whl blksheep-0.0.7:

    pip install blksheep-0.0.7.whl


نصب پکیج tar.gz blksheep-0.0.7:

    pip install blksheep-0.0.7.tar.gz