معرفی شرکت ها


blip-inference-0.1.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

project_description
ویژگی مقدار
سیستم عامل -
نام فایل blip-inference-0.1.0
نام blip-inference
نسخه کتابخانه 0.1.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Frank Odom
ایمیل نویسنده frank.odom.iii@gmail.com
آدرس صفحه اصلی https://github.com/fkodom/blip-inference
آدرس اینترنتی https://pypi.org/project/blip-inference/
مجوز -
# blip-inference Pretrained [BLIP](https://github.com/salesforce/BLIP) with a similar API to [CLIP](https://github.com/openai/CLIP). BLIP tends to achieve slightly better accuracy than CLIP with similar inference speed. The CLIP API is much cleaner and more commonly used. This repo refactors BLIP to match the CLIP interface, so that it's easier for practitioners to switch between CLIP / BLIP models. ## Install From PyPI: ```bash pip install blip-inference ``` From source: ```bash pip install "blip_inference @ git+https://git@github.com/fkodom/blip-inference.git" ``` ## Usage User-facing methods behave similarly to CLIP. A few underlying details change, which will only affect advanced users. ```python import torch import blip_inference as blip from PIL import Image device = "cuda" if torch.cuda.is_available() else "cpu" model, preprocess = blip.load("feature_extractor", device=device) raw_text = ["a diagram", "a dog", "a cat"] text = blip.tokenize(raw_text).to(device) image = preprocess(Image.open("kitten.jpeg")).unsqueeze(0).to(device) with torch.no_grad(): logits_per_image, logits_per_text = model(image, text) probs = torch.softmax(logits_per_image, dim=-1) print("\nPredictions:\n") for idx, value in enumerate(probs.squeeze()): print(f"{raw_text[idx]:>16s}: {100 * value.item():.2f}%") probs = logits_per_image.softmax(dim=-1).cpu().numpy() ``` ### Zero-Shot Prediction ```python import blip_inference as blip import torch from PIL import Image device = "cuda" if torch.cuda.is_available() else "cpu" model, preprocess = blip.load('base', device) raw_text = ["a diagram", "a dog", "a cat"] text = blip.tokenize(raw_text).to(device) image = preprocess(Image.open("kitten.jpeg")).unsqueeze(0).to(device) with torch.no_grad(): image_features = model.encode_image(image) text_features = model.encode_text(text) image_features /= image_features.norm(dim=-1, keepdim=True) text_features /= text_features.norm(dim=-1, keepdim=True) similarity = (100 * image_features @ text_features.T).softmax(dim=-1) print("\nPredictions:\n") for idx, value in enumerate(similarity.squeeze()): print(f"{raw_text[idx]:>16s}: {100 * value.item():.2f}%") ``` ### Linear Probe Evaluation See [this example from the CLIP repo](https://github.com/openai/CLIP#linear-probe-evaluation). Everything should be identical, except for swapping: * `import clip` --> `import blip_inference as blip` * `clip` --> `blip` ## API Similar to CLIP, the `blip_inference` module provides the following methods: #### `blip_inference.available_models() -> List[str]` Returns the names of the available BLIP models. #### `blip_inference.load(name: str, device=...) -> Tuple[BLIP, Callable]` Returns the model and the TorchVision transform needed by the model, specified by the model name returned by `blip_inference.available_models()`. It will download the model as necessary. The `name` argument can also be a path to a local checkpoint. The device to run the model can be optionally specified, and the default is to use the first CUDA device if there is any, otherwise the CPU. #### `blip_inference.tokenize(text: Union[str, List[str]], context_length: int = 35) -> BatchEncoding` Returns a dictionary with tokenized sequences of given text input(s). This can be used as the input to the model --- The model returned by `blip_inference.load()` supports the following methods: #### `model.encode_image(image: Tensor) -> Tensor` Given a batch of images, returns the image features encoded by the vision portion of the BLIP model. #### `model.encode_text(text: BatchEncoding) -> Tensor` Given a batch of text tokens, returns the text features encoded by the language portion of the BLIP model. #### `model(image: Tensor, text: BatchEncoding) -> Tuple[Tensor, Tensor]` Given a batch of images and a batch of text tokens, returns two Tensors, containing the logit scores corresponding to each image and text input. The values are cosine similarities between the corresponding image and text features. **NOTE**: Unlike CLIP, logits for BLIP models **do not** need to be multiplied by 100 before computing cosine similarity. That scaling factor is built into the BLIP model.


نیازمندی

مقدار نام
- timm
>=4.15.0 transformers
>=1.10 torch
- black
- flake8
- isort
- mypy
- pytest
- pytest-cov
- pre-commit
- pre-commit
- black
- flake8
- isort
- mypy
- pytest
- pytest-cov
- black
- flake8
- isort
- mypy
- pytest
- pytest-cov


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl blip-inference-0.1.0:

    pip install blip-inference-0.1.0.whl


نصب پکیج tar.gz blip-inference-0.1.0:

    pip install blip-inference-0.1.0.tar.gz