معرفی شرکت ها


blinpy-0.1.7


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Bayesian Linear Models in Python
ویژگی مقدار
سیستم عامل -
نام فایل blinpy-0.1.7
نام blinpy
نسخه کتابخانه 0.1.7
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Antti Solonen
ایمیل نویسنده antti.solonen@gmail.com
آدرس صفحه اصلی https://github.com/solbes/blinpy
آدرس اینترنتی https://pypi.org/project/blinpy/
مجوز MIT
# blinpy - Bayesian LINear models in PYthon When applying linear regression models in practice, one often ends up going back to the basic formulas to figure out how things work, especially if Gaussian priors are applied. This package is built for this (almost trivial) task of fitting linear-Gaussian models. The package includes a basic numpy engine for fitting a general linear-Gaussian model, plus some model classes that provide a simple interface for working with the models. In the end, before fitting a specified model, the model is always transformed into the following form: Likelihood: y = A&theta; + N(0, &Gamma;<sub>obs</sub>) Prior: B&theta; ~ N(&mu;<sub>pr</sub>, &Gamma;<sub>obs</sub>). If one has the system already in suitable numpy arrays, one can directly use the numpy engine to fit the above system. However, some model classes are defined as well that make it easy to define and work with some common types of linear-Gaussian models, see the examples below. ## Installation `pip install blinpy` ## Examples ### Fitting a line, no priors Standard linear regression can be easily done with `blinpy.models.LinearModel` class that takes in the input data as a `pandas` DataFrame. Let us fit a model y=&theta;<sub>0</sub> + &theta;<sub>1</sub>x + e using some dummy data: ```python import pandas as pd import numpy as np from blinpy.models import LinearModel data = pd.DataFrame( {'x': np.array([0.0, 1.0, 1.0, 2.0, 1.8, 3.0, 4.0, 5.2, 6.5, 8.0, 10.0]), 'y': np.array([5.0, 5.0, 5.1, 5.3, 5.5, 5.7, 6.0, 6.3, 6.7, 7.1, 7.5])} ) lm = LinearModel( output_col='y', input_cols=['x'], bias = True, theta_names=['th1'], ).fit(data) print(lm.theta) ``` That is, the model is defined in the constructor, and fitted using the `fit` method. The fitted parameters can be accessed via `lm.theta` property. The code outputs: ```python {'bias': 4.8839773707086165, 'th1': 0.2700293864048287} ``` The posterior mean and covariance information are also stored in numpy arrays as `lm.post_mu` and `lm.post_icov`. Note that the posterior precision matrix (inverse of covariance) is given instead of the covariance matrix. ### Fit a line with priors Gaussian priors (mean and cov) can be added to the `fit` method of `LinearModel`. Let us take the same example as above, but now add a prior `bias ~ N(4,1)` and `th1 ~ N(0.35, 0.001)`: ```python lm = LinearModel( output_col='y', input_cols=['x'], bias = True, theta_names=['th1'], ).fit(data, pri_mu=[4.0, 0.35], pri_cov=[1.0, 0.001]) print(lm.theta) {'bias': 4.546825637808106, 'th1': 0.34442570226594676} ``` The prior covariance can be given as a scalar, vector or matrix. If it's a scalar, the same variance is applied for all parameters. If it's a vector, like in the example above, the variances for individual parameters are given by the vector elements. A full matrix can be used if the parameters correlate a priori. ### Fit a line with partial priors Sometimes we don't want to put priors for all the parameters, but just for a subset of them. `LinearModel` supports this via the `pri_cols` argument in the model constructor. For instance, let us now fit the same model as above, but only put the prior `th1 ~ N(0.35, 0.001)` and no prior for the bias term: ```python lm = LinearModel( output_col='y', input_cols=['x'], bias = True, theta_names=['th1'], pri_cols = ['th1'] ).fit(data, pri_mu=[0.35], pri_cov=[0.001]) print(lm.theta) {'bias': 4.603935457929664, 'th1': 0.34251082265349875} ``` ### Using the numpy engine directly For some more complex linear models, one might want to use the numpy linear fitting function directly. The function is found from `blinpy.utils.linfit`, an example of how to fit the above example is given below: ```python import numpy as np from blinpy.utils import linfit x = np.array([0.0, 1.0, 1.0, 2.0, 1.8, 3.0, 4.0, 5.2, 6.5, 8.0, 10.0]) y = np.array([5.0, 5.0, 5.1, 5.3, 5.5, 5.7, 6.0, 6.3, 6.7, 7.1, 7.5]) X = np.concatenate((np.ones((11, 1)), x[:, np.newaxis]), axis=1) mu, icov, _ = linfit(y, X, pri_mu=[4.0, 0.35], pri_cov=[1.0, 0.001]) print(mu) [4.54682564 0.3444257] ``` One can give the optional prior transformation matrix `B` as an input to the `linfit` function, by default `B` is identity. ### Smoothed interpolation In many cases, one needs to approximate a function from noisy measurements. To get the smooth underlying trend behind the data, one often uses techniques like LOESS. An alternative way is to discretize the function onto a grid and treat the function values at the grid points as unknowns. In order to get smooth trends, one can add a prior (penalization term) that favors smoothness. In the helper function `smooth_interp1`, one can specify priors for the first and second order differences between the function values. The choice of using first or second order smoothness priors affects the extrapolation behavior of the function, as demonstrated below. ```python import numpy as np import blinpy as bp import matplotlib.pyplot as plt # generate data xobs = np.random.random(500) ysig = 0.05 yobs = 0.5+0.2*xobs + ysig*np.random.randn(len(xobs)) # define grid for fitting xfit = np.linspace(-0.5,1.5,30) # fit with second order difference prior yfit1, yfit_icov1 = bp.models.smooth_interp1(xfit, xobs, yobs, obs_cov=ysig**2, d2_var=1e-5) yfit_cov1 = np.linalg.inv(yfit_icov1) # fit with first order difference prior yfit2, yfit_icov2 = bp.models.smooth_interp1(xfit, xobs, yobs, obs_cov=ysig**2, d1_var=1e-4) yfit_cov2 = np.linalg.inv(yfit_icov2) # plot results plt.figure(figsize=(8,8)) plt.subplot(211) plt.plot(xobs,yobs,'k.', alpha=0.5) plt.plot(xfit, yfit1, 'r-') plt.plot(xfit, yfit1+2*np.sqrt(np.diag(yfit_cov1)), 'r--', lw=1) plt.plot(xfit, yfit1-2*np.sqrt(np.diag(yfit_cov1)), 'r--', lw=1) plt.subplot(212) plt.plot(xobs,yobs,'k.', alpha=0.5) plt.plot(xfit, yfit2, 'r-') plt.plot(xfit, yfit2+2*np.sqrt(np.diag(yfit_cov2)), 'r--', lw=1) plt.plot(xfit, yfit2-2*np.sqrt(np.diag(yfit_cov2)), 'r--', lw=1) plt.show() ``` ![smooth_interp_demo](https://user-images.githubusercontent.com/6495497/111585506-175b4b00-87c8-11eb-9ea4-7e0d7664f05b.png) ### Generalized Additive Models (GAM): line fit The `GamModel` class offers a more general interface to linear model fitting. With `GamModel` one can fit models that consist of components that represent `N` columns in the final system matrix. Priors can be given (optional) for each block. For instance, the line fitting example, where a prior is given for the slope, is solved with `GamModel` as follows: ```python import numpy as np import pandas as pd from blinpy.models import GamModel data = pd.DataFrame( {'x': np.array([0.0, 1.0, 1.0, 2.0, 1.8, 3.0, 4.0, 5.2, 6.5, 8.0, 10.0]), 'y': np.array([5.0, 5.0, 5.1, 5.3, 5.5, 5.7, 6.0, 6.3, 6.7, 7.1, 7.5])} ) gam_specs = [ { 'fun': lambda df: df['x'].values[:, np.newaxis], 'name': 'slope', 'prior': { 'B': np.eye(1), 'mu': np.array([0.35]), 'cov': np.array([0.001]) } }, { 'fun': lambda df: np.ones((len(df), 1)), 'name': 'bias' } ] model = GamModel('y', gam_specs).fit(data) model.theta {'slope': array([0.34251082]), 'bias': array([4.60393546])} ``` That is, one feeds in a list of dicts that specify the GAM components. Each dict must contain a function that returns the system matrix columns and a name for the model component. Optionally, one can specify a Gaussian prior for the components. The `GamModel` class then compiles and fits the linear-Gaussian system. ### GAM: non-parametric regression Let us take a slightly more non-trivial example of a GAM, where we model an unknown function in a grid of selected input points. Points in between are linearly interpolated. Moreover, we impose a second order difference prior on the function values to enforce smoothness. The interpolation matrix and difference prior construction are done with utility functions provided in the package. The example code is given below: ```python import numpy as np import pandas as pd import blinpy as bp import matplotlib.pyplot as plt xobs = -1.75 + 3.5*np.random.random(100) yobs = 3*xobs**4-6*xobs**2+2 + np.random.randn(len(xobs)) data = pd.DataFrame({'x': xobs, 'y': yobs}) xfit = np.linspace(-2,2,20) nfit = len(xfit) gam_spec = [ { 'fun': lambda df: bp.utils.interp_matrix(df['x'].values, xfit), 'name': 'smoothfun', 'prior': { 'B': bp.utils.diffmat(nfit, order=2), 'mu': np.zeros(nfit-2), 'cov': np.ones(nfit-2) } } ] model = bp.models.GamModel('y', gam_spec).fit(data) print(model.theta) plt.figure(figsize=(6,4)) plt.plot(xobs, yobs, 'k.') plt.plot(xfit, model.post_mu, 'r-') plt.grid(True) plt.show() {'smoothfun': array([16.83584518, 11.41451668, 5.99318818, 1.70894339, -0.57917346, -1.10535146, -0.62246082, 0.95388427, 1.88575506, 2.07577794, 2.19637689, 1.61404071, 0.48381775, -0.22563978, -0.74711054, -0.82681361, 0.84100582, 4.54902101, 8.76411573, 12.97921046])} ``` ![gam_demo2](https://user-images.githubusercontent.com/6495497/122905179-a93f9a80-d359-11eb-9e75-9efa6e0b0bf6.png) GAM models give a nice way to blend parametric and nonparametric regression models together.


نحوه نصب


نصب پکیج whl blinpy-0.1.7:

    pip install blinpy-0.1.7.whl


نصب پکیج tar.gz blinpy-0.1.7:

    pip install blinpy-0.1.7.tar.gz