معرفی شرکت ها


bleepy-profanity-check-0.1.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A fast, robust library to check for offensive language in strings. This version of "profanity-check" is used by Bleepy.
ویژگی مقدار
سیستم عامل -
نام فایل bleepy-profanity-check-0.1.9
نام bleepy-profanity-check
نسخه کتابخانه 0.1.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Victor Zhou (original author), Menelaos Kotoglou, Dimitrios Mistriotis, Reyniel Mark T. Escamillas
ایمیل نویسنده "Victor Zhou (original author), Menelaos Kotoglou, Dimitrios Mistriotis, and Reyniel Mark Escamillas" <rtescamillas@ccc.edu.ph>
آدرس صفحه اصلی https://github.com/reyniel26/bleepy-profanity-check
آدرس اینترنتی https://pypi.org/project/bleepy-profanity-check/
مجوز -
# bleepy-profanity-check <!-- [![Build Status](https://travis-ci.com/dimitrismistriotis/profanity-check.svg?branch=master)](https://travis-ci.com/dimitrismistriotis/profanity-check) --> ``` pip install bleepy-profanity-check ``` [`bleepy-profanity-check`](https://pypi.org/project/bleepy-profanity-check/) `profanity-check` version used for [`Bleepy`](https://github.com/reyniel26/bleepy) A fast, robust Python library to check for profanity or offensive language in strings. Read more about how and why `profanity-check` was built in [this blog post](https://victorzhou.com/blog/better-profanity-detection-with-scikit-learn/). You can also test out `profanity-check` [in your browser](https://repl.it/@vzhou842/profanity-check-playground). **Notice**: We created a library for this project, see: <https://pypi.org/project/alt-profanity-check/> and <https://gitlab.com/dimitrios/alt-profanity-check/> ## Disclaimer Profanity-check is originally created by [Victor Zhou](https://github.com/vzhou842), and updated by [other contributors](https://github.com/dimitrismistriotis/profanity-check/graphs/contributors). This version of profanity-check is used by [Bleepy](https://github.com/reyniel26/bleepy) to detect and bleep tagalog and english profanity from videos. Therefore this version is called bleepy-profanity-check. ## How It Works `profanity-check` uses a linear SVM model trained on 200k human-labeled samples of clean and profane text strings. Its model is simple but surprisingly effective, meaning **`profanity-check` is both robust and extremely performant**. ## Why Use profanity-check? ### No Explicit Blacklist Many profanity detection libraries use a hard-coded list of bad words to detect and filter profanity. For example, [profanity](https://pypi.org/project/profanity/) uses [this wordlist](https://github.com/ben174/profanity/blob/master/profanity/data/wordlist.txt), and even [better-profanity](https://pypi.org/project/better-profanity/) still uses [a wordlist](https://github.com/snguyenthanh/better_profanity/blob/master/better_profanity/profanity_wordlist.txt). There are obviously glaring issues with this approach, and, while they might be performant, **these libraries are not accurate at all**. A simple example for which `profanity-check` is better is the phrase *"You cocksucker"* - `profanity` thinks this is clean because it doesn't have *"cocksucker"* in its wordlist. ### Performance Other libraries like [profanity-filter](https://github.com/rominf/profanity-filter) use more sophisticated methods that are much more accurate but at the cost of performance. A benchmark (performed December 2018 on a new 2018 Macbook Pro) using [a Kaggle dataset of Wikipedia comments](https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/data) yielded roughly the following results: | Package | 1 Prediction (ms) | 10 Predictions (ms) | 100 Predictions (ms) | --------|-------------------|---------------------|----------------------- | profanity-check | 0.2 | 0.5 | 3.5 | profanity-filter | 60 | 1200 | 13000 | profanity | 0.3 | 1.2 | 24 `profanity-check` is anywhere from **300 - 4000 times faster** than `profanity-filter` in this benchmark! ### Accuracy This table speaks for itself: | Package | Test Accuracy | Balanced Test Accuracy | Precision | Recall | F1 Score | ------- | ------------- | ---------------------- | --------- | ------ | -------- | profanity-check | 95.0% | 93.0% | 86.1% | 89.6% | 0.88 | profanity-filter | 91.8% | 83.6% | 85.4% | 70.2% | 0.77 | profanity | 85.6% | 65.1% | 91.7% | 30.8% | 0.46 See the How section below for more details on the dataset used for these results. ## Installation ``` $ pip install profanity-check ``` ## Usage ```python from profanity_check import predict, predict_prob predict(['predict() takes an array and returns a 1 for each string if it is offensive, else 0.']) # [0] predict(['fuck you']) # [1] predict_prob(['predict_prob() takes an array and returns the probability each string is offensive']) # [0.08686173] predict_prob(['go to hell, you scum']) # [0.7618861] ``` Note that both `predict()` and `predict_prob` return [`numpy`](https://pypi.org/project/numpy/) arrays. ## More on How/Why It Works ### How Special thanks to the authors of the datasets used in this project. `profanity-check` was trained on a combined dataset from 2 sources: - [t-davidson/hate-speech-and-offensive-language](https://github.com/t-davidson/hate-speech-and-offensive-language/tree/master/data), used in their paper *Automated Hate Speech Detection and the Problem of Offensive Language* - the [Toxic Comment Classification Challenge](https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/data) on Kaggle. `profanity-check` relies heavily on the excellent [`scikit-learn`](https://scikit-learn.org/) library. It's mostly powered by `scikit-learn` classes [`CountVectorizer`](https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html), [`LinearSVC`](https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html), and [`CalibratedClassifierCV`](https://scikit-learn.org/stable/modules/generated/sklearn.calibration.CalibratedClassifierCV.html). It uses a [Bag-of-words model](https://en.wikipedia.org/wiki/Bag-of-words_model) to vectorize input strings before feeding them to a linear classifier. ### Why One simplified way you could think about why `profanity-check` works is this: during the training process, the model learns which words are "bad" and how "bad" they are because those words will appear more often in offensive texts. Thus, it's as if the training process is picking out the "bad" words out of all possible words and using those to make future predictions. This is better than just relying on arbitrary word blacklists chosen by humans! ## Caveats This library is far from perfect. For example, it has a hard time picking up on less common variants of swear words like *"f4ck you"* or *"you b1tch"* because they don't appear often enough in the training corpus. **Never treat any prediction from this library as unquestionable truth, because it does and will make mistakes.** Instead, use this library as a heuristic.


نیازمندی

مقدار نام
==1.1.3 scikit-learn
>=1.2.0 joblib
>=7.2.0 pytest
>=2.15.6 pylint
>=5.0.4 flake8


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl bleepy-profanity-check-0.1.9:

    pip install bleepy-profanity-check-0.1.9.whl


نصب پکیج tar.gz bleepy-profanity-check-0.1.9:

    pip install bleepy-profanity-check-0.1.9.tar.gz